Hippocampal LTP modulation and glutamatergic receptors following vestibular loss

Abstract

Vestibular dysfunction strongly impairs hippocampus-dependent spatial memory performance and place cell function. However, the hippocampal encoding of vestibular information at the synaptic level, remains sparsely explored and controversial. We investigated changes in in vivo long-term potentiation (LTP) and NMDA glutamate receptor (NMDAr) density and distribution after bilateral vestibular lesions (BVL) in adult rats. At day 30 (D30) post-BVL, the LTP of the population spike recorded in the dentate gyrus (DG) was higher in BVL rats, for the entire 3 h of LTP recording, while no difference was observed in the fEPSP slope. However, there was an increase in EPSP–spike (E–S) potentiation in lesioned rats. NMDArs were upregulated at D7 and D30 predominantly within the DG and CA1. At D30, we observed a higher NMDAr density in the left hippocampus. NMDArs were overexpressed on both neurons and non-neuronal cells, suggesting a decrease of the entorhinal glutamatergic inputs to the hippocampus following BVL. The EPSP–spike (E–S) potentiation increase was consistent with the dorsal hippocampus NMDAr upregulation. Such an increase could reflect a non-specific enhancement of synaptic efficacy, leading to a disruption of memory encoding, and therefore might underlie the memory deficits previously reported in rats and humans following vestibular loss.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abraham WC, Bliss TV, Goddard GV (1985) Heterosynaptic changes accompany long-term but not short-term potentiation of the perforant path in the anaesthetized rat. J Physiol 363(1):335–349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Aigner TG (1995) Pharmacology of memory: cholinergic–glutamatergic interactions. Curr Opin Neurobiol 5(2):155–160

    CAS  PubMed  Article  Google Scholar 

  3. Andersen P (2003) A prelude to long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358(1432):613–615

    PubMed  PubMed Central  Article  Google Scholar 

  4. Andersen P, Sundberg SH, Sveen O, Swann JW, Wigström H (1980) Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol 302(1):463–482

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Arleo A, Rondi-Reig L (2007) Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J Integr Neurosci 6(3):327–366

    PubMed  Article  Google Scholar 

  6. Besnard S et al (2012) Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors. Hippocampus 22(4):814–826

    CAS  PubMed  Article  Google Scholar 

  7. Bliss T, Collingridge G (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  PubMed  Article  Google Scholar 

  8. Boadas-Vaello P, Riera J, Llorens J (2005) Behavioral and pathological effects in the rat define two groups of neurotoxic nitriles. Toxicol Sci 88(2):456–466

    CAS  PubMed  Article  Google Scholar 

  9. Brandt T et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128(11):2732–2741

    PubMed  Article  Google Scholar 

  10. Daoudal G, Hanada Y, Debanne D (2002) Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. PNAS USA 99(22):14512–14517

    CAS  PubMed  Article  Google Scholar 

  11. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Revs 51(1):7–61

    CAS  Google Scholar 

  12. Doyère V, Srebro B, Laroche S (1997) Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J Neurophysiol 77(2):571–578

    PubMed  Article  Google Scholar 

  13. Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176(3):289–296

    CAS  PubMed  Article  Google Scholar 

  14. Hervé PY, Zago L, Petit L, Mazoyer B, Tzourio-Mazoyer N (2013) Revisiting human hemispheric specialization with neuroimaging. Trends Cogn Sci 17(2):69–80

    PubMed  Article  Google Scholar 

  15. Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integrat Neurosci 8:59

    Google Scholar 

  16. Hitier M, Sato G, Zhang YF, Besnard S, Smith PF (2018) Effects of electrical stimulation of the rat vestibular labyrinth on c-Fos expression in the hippocampus. Neurosci Lett 677:60–64

    CAS  PubMed  Article  Google Scholar 

  17. Hoenig JM, Heisey DM (2001) The abuse of power. Am Stat 55(1):19–24

    Article  Google Scholar 

  18. Hu XJ, Ticku MK (1995) Chronic ethanol treatment upregulates the NMDA receptor function and binding in mammalian cortical neurons. Mol Brain Res 30(2):347–356

    CAS  PubMed  Article  Google Scholar 

  19. Hüfner K, Strupp M, Smith P, Brandt T, Jahn K (2011) Spatial separation of visual and vestibular processing in the human hippocampal formation. Ann NY Acad Sci 1233(1):177–186

    PubMed  Article  Google Scholar 

  20. Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N (2010) Lateralized human hippocampal activity predicts navigation based on sequence or place memory. PNAS USA 107(32):14466–14471

    CAS  PubMed  Article  Google Scholar 

  21. Iorio KR, Reinlib L, Tabakoff B, Hoffman PL (1992) Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-d-aspartate receptor function. Mol Pharmacol 41(6):1142–1148

    CAS  PubMed  Google Scholar 

  22. Jacob P-Y, Poucet B, Liberge M, Save E, Sargolini F (2014) Vestibular control of entorhinal cortex activity in spatial navigation. Front Integrat Neurosci 8:38

    Google Scholar 

  23. Janssen WGM et al (2005) Cellular and synaptic distribution of NR2A and NR2B in macaque monkey and rat hippocampus as visualized with subunit-specific monoclonal antibodies. Exp Neurol 191(Suppl 1):S28–S44

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Jeffery KJ, Morris RG (1993) Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus 3(2):133–140

    CAS  PubMed  Article  Google Scholar 

  25. Jester JM, Campbell LW, Sejnowski TJ (1995) Associative EPSP-spike potentiation induced by pairing orthodromic and antidromic stimulation in rat hippocampal slices. J Physiol 484(3):689–705

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Kairiss EW, Abraham WC, Bilkey DK, Goddard GV (1987) Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus. Brain Res 401(1):87–94

    CAS  PubMed  Article  Google Scholar 

  27. Lee A et al (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8(6):723–729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Lee GW, Kim JH, Kim MS (2017) Reduction of long-term potentiation at Schaffer collateral-CA1 synapses in the rat hippocampus at the acute stage of vestibular compensation. Korean J Physiol Pharmacol 21(4):423–428

    PubMed  PubMed Central  Article  Google Scholar 

  29. Lei Y, Yaroslavsky I, Tejani-Butt SM (2009) Strain differences in the distribution of N-methyl-d-aspartate and gamma (gamma)-aminobutyric acid-A receptors in rat brain. Life Sci 85(23–26):794–799

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Lew M (2012) Bad statistical practice in pharmacology (and other basic biomedical disciplines): You probably don’t know P. Br J Pharmacol 166:1559–1567

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Liu P, Zheng Y, King J, Darlington CL, Smith PF (2003) Long-term changes in hippocampal N-methyl-d-aspartate receptor subunits following unilateral vestibular damage in rat. Neuroscience 117(4):965–970

    CAS  PubMed  Article  Google Scholar 

  32. Lu YM, Mansuy IM, Kandel ER, Roder J (2000) Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26(1):197–205

    CAS  PubMed  Article  Google Scholar 

  33. Machado ML et al (2012a) Spatial and non-spatial performance in mutant mice devoid of otoliths. Neurosci Lett 522(1):57–61

    CAS  PubMed  Article  Google Scholar 

  34. Machado ML et al (2012b) Influence of anxiety in spatial memory impairments related to the loss of vestibular function in rat. Neuroscience 218:161–169

    CAS  PubMed  Article  Google Scholar 

  35. McNaughton BL (1982) Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol 324(1):249–262

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Morris RGM, Frey U (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond Ser B Biol Sci 352(1360):1489–1503

    CAS  Article  Google Scholar 

  37. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    CAS  Article  Google Scholar 

  38. Moser MB, Moser EI, Forrest E, Andersen P, Morris RG (1995) Spatial learning with a mini-slab in the dorsal hippocampus. PNAS USA 92(21):9697–9701

    CAS  PubMed  Article  Google Scholar 

  39. Okano H (2002) Neural stem cells: progression of basic research and perspective for clinical application. Keio J Med 51(3):115–128

    CAS  PubMed  Article  Google Scholar 

  40. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7(1):3947

    Article  CAS  Google Scholar 

  41. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  42. Rogers LJ (2014) Asymmetry of brain and behavior in animals: its development, function, and human relevance. Genesis 52(6):555–571

    PubMed  Article  Google Scholar 

  43. Ross ST, Soltesz I (2001) Long-term plasticity in interneurons of the dentate gyrus. Proc Natl Acad Sci USA 98(15):8874–8879

    CAS  PubMed  Article  Google Scholar 

  44. Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK (2003) Long-term effects of permanent vestibular lesions on hippocampal spatial firing. J Neurosci 23(16):6490–6498

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Shinohara Y et al (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. PNAS USA 105(49):19498–19503

    CAS  PubMed  Article  Google Scholar 

  46. Shipton OA et al (2014) Left–right dissociation of hippocampal memory processes in mice. PNAS USA 111(42):15238–15243

    CAS  PubMed  Article  Google Scholar 

  47. Smith PF (2017) The vestibular system and cognition. Curr Opin Neurol 30(1):84–89

    PubMed  Article  Google Scholar 

  48. Smith PF, Zheng Y (2013) Principal component analysis suggests subtle changes in glutamate receptor subunit expression in the rat hippocampus following bilateral vestibular deafferentation. Neurosci Lett 548:265–268

    CAS  PubMed  Article  Google Scholar 

  49. Stackman RW, Clark AS, Taube JS (2002) Hippocampal spatial representations require vestibular input. Hippocampus 12:291–303

    PubMed  PubMed Central  Article  Google Scholar 

  50. Tomasulo RA, Levy WB, Steward O (1991) LTP-associated EPSP/spike dissociation in the dentate gyrus: GABAergic and non-GABAergic components. Brain Res 561(1):27–34

    CAS  PubMed  Article  Google Scholar 

  51. Truchet B et al (2012) Kv4 potassium channels modulate hippocampal EPSP-spike potentiation and spatial memory in rats. Learn Mem 19(7):282–293

    CAS  PubMed  Article  Google Scholar 

  52. Vignaux G et al (2012) Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol Appl Pharmacol 258(1):61–71

    CAS  PubMed  Article  Google Scholar 

  53. Villalobos C, Maldonado PE, Valdés JL (2017) Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep. PLoS One 12:2

    Google Scholar 

  54. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097

    CAS  PubMed  Article  Google Scholar 

  55. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33(3):161253

    Article  Google Scholar 

  56. Yoder RM, Taube JS (2009) Head direction cell activity in mice: Robust directional signal depends on intact otolith organs. J Neurosci 29(4):1061–1076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Zheng Y et al (2010) Hippocampal synaptic transmission and LTP in vivo are intact following bilateral vestibular deafferentation in the rat. Hippocampus 20(4):461–468

    PubMed  Google Scholar 

  58. Zheng Y et al (2012) The effects of bilateral vestibular loss on hippocampal volume, neuronal number, and cell proliferation in rats. Front Neurol 3:20

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng Y, Wilson G, Stiles L, Smith PF (2013) Glutamate receptor subunit and calmodulin kinase II expression, with and without T maze training, in the rat hippocampus following bilateral vestibular deafferentation. PLoS One 8(2):e54527

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs Guillemette Gaucquelin-Koch, the Centre National de la Recherche Spatiale, the People Programme of the European Union’s Seventh Framework Programme FP7/2007-2013/through REA (Grant number: 318980) and the Normandy Region for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephane Besnard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were conducted in accordance with the European Communities Council Directive 86/6609/EEC, as well as French legislation. The protocol was approved by the regional ethical committee (Comité d’Ethique Normandie en Matière d’Expérimentation Animale, CENOXEMA, number assigned 0412-01).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Truchet, B., Benoit, A., Chaillan, F. et al. Hippocampal LTP modulation and glutamatergic receptors following vestibular loss. Brain Struct Funct 224, 699–711 (2019). https://doi.org/10.1007/s00429-018-1792-0

Download citation

Keywords

  • NMDA receptors
  • Dentate gyrus
  • E–S potentiation
  • In vivo
  • RRID: AB_670215
  • AB_1841228