Skip to main content
Log in

Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Deficient prefrontal cortex (PFC) GABA function is hypothesized to play a role in schizophrenia and other psychiatric disorders. In rodents, PFC GABAA receptor antagonism produces cognitive and behavioral changes relevant to these disorders, including impaired spatial memory assessed with the traditional working/reference memory radial maze task. This aspect of spatial memory does not depend on PFC, suggesting that deficient PFC GABAergic transmission may interfere with non-PFC-dependent cognitive functions via aberrant increases in PFC output. To test this, we assessed whether PFC GABAA antagonism (50 ng bicuculline methbromide) alters neuronal activation in PFC terminal regions, including the striatum, thalamus, hippocampus, amygdala, and cortical regions, of adult male rats using the immediate early gene, c-Fos, as an activity marker. A subset of these animals were also trained and/or tested on the working/reference memory radial maze task. These treatments caused widespread increases in neuronal activation in animals under baseline conditions, with notable exception of the hippocampus. Furthermore, PFC GABAA antagonism impaired task performance. In most instances, training and/or testing on the radial maze had no additional effects on neuronal activation. However, in both the hippocampus and rhomboid thalamic nucleus, PFC GABAA antagonism caused a selective increase in neuronal activation in animals trained on the maze. These results indicate that deficiencies in PFC GABAergic transmission may have widespread impacts on neuronal activity that may interfere with certain PFC-independent cognitive functions. Furthermore, these alterations in activity are modulated by plasticity induced by spatial learning in the hippocampus and rhomboid thalamic nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggleton JP, Nelson AJ (2015) Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 54:131–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  CAS  PubMed  Google Scholar 

  • Amitai N, Kuczenski R, Behrens MM, Markou A (2012) Repeated phencyclidine administration alters glutamate release and decreases GABA markers in the prefrontal cortex of rats. Neuropharmacology 62:1422–1431

    Article  CAS  PubMed  Google Scholar 

  • Anticevic A, Repovs G, Barch DM (2013) Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities. Schizophr Bull 39:168–178

    Article  PubMed  Google Scholar 

  • Auger ML, Floresco SB (2015) Prefrontal cortical GABA modulation of spatial reference and working memory. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyu013

    Article  Google Scholar 

  • Auger ML, Floresco SB (2016) Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology 113:10–20

    Article  CAS  PubMed  Google Scholar 

  • Auger ML, Meccia J, Floresco SB (2017) Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABAA transmission: comparison with NMDA transmission. Psychopharmacology (Berl) 234:2777–2792

    Article  CAS  Google Scholar 

  • Becker JT, Walker JA, Olton DS (1980) Neuroanatomical bases of spatial memory. Brain Res 200:307–320

    Article  CAS  PubMed  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  CAS  PubMed  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52:1015–1018 (discussion 1019–24)

    Article  CAS  PubMed  Google Scholar 

  • Bi LL, Wang J, Luo ZY, Chen SP, Geng F, Chen YH, Li SJ, Yuan CH, Lin S, Gao TM (2013) Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology 72:148–156

    Article  CAS  PubMed  Google Scholar 

  • Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CM, Stanford AD, Mao X, Abi-Dargham A, Shungu DC, Lisanby SH, Schroeder CE, Kegeles LS (2014) GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin 4:531–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombo PJ, Davis HP, Volpe BT (1989) Allocentric spatial and tactile memory impairments in rats with dorsal caudate lesions are affected by preoperative behavioral training. Behav Neurosci 103:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN, Lewis DA (2011) Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 168:921–929

    Article  PubMed  PubMed Central  Google Scholar 

  • Do Monte FH, Quirk GJ, Li B, Penzo MA (2016) Retrieving fear memories as time goes by… Mol Psychiatry 21:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duva CA, Floresco SB, Wunderlich GR, Lao TL, Pinel JP, Phillips AG (1997) Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav Neurosci 111:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Enomoto T, Tse MT, Floresco SB (2011) Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 69:432–441

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic–cortical–striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204:396–409

    Article  PubMed  Google Scholar 

  • François J, Ferrandon A, Koning E, Angst MJ, Sandner G, Nehlig A (2009) Selective reorganization of GABAergic transmission in neonatal ventral hippocampal-lesioned rats. Int J Neuropsychopharmacol 12:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Frankle WG, Cho RY, Prasad KM, Mason NS, Paris J, Himes ML, Walker C, Lewis DA, Narendran R (2015) In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 172:1148–1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghods-Sharifi S, St Onge JR, Floresco SB (2009) Fundamental contribution by the basolateral amygdala to different forms of decision making. J Neurosci 29:5251–5259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2012) NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E, DiGiorgi Gerevini V (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29:9481–9489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque T, Yamamoto S, Masuda Y, Kato T, Sato F, Uchino K, Oka A, Nakamura M, Takeda R, Ono T, Kogo M, Yoshida A (2010) Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat. Brain Res 1346:69–82

    Article  CAS  PubMed  Google Scholar 

  • Hartung H, Cichon N, De Feo V, Riemann S, Schildt S, Lindemann C, Mulert C, Gogos JA, Hanganu-Opatz IL (2016) From shortage to surge: a developmental switch in hippocampal-prefrontal coupling in a gene-environment model of neuropsychiatric disorders. Cereb Cortex 26:4265–4281

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey RE, Thompson SM, Sanchez LM, Yoder RM, Clark BJ (2017) Post-training inactivation of the anterior thalamic nuclei impairs spatial performance on the radial arm maze. Front Neurosci 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008) Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479–489

    Article  PubMed  PubMed Central  Google Scholar 

  • He J, Yamada K, Nabeshima T (2002a) A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats. Neuropsychopharmacology 26:259–268

    Article  CAS  PubMed  Google Scholar 

  • He J, Yamada K, Nakajima A, Kamei H, Nabeshima T (2002b) Learning and memory in two different reward tasks in a radial arm maze in rats. Behav Brain Res 134:139–148

    Article  PubMed  Google Scholar 

  • Hunt MJ, Kopell NJ, Traub RD, Whittington MA (2017) Aberrant network activity in schizophrenia. Trends Neurosci 40:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR, Lu B (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci USA 106:19593–19598

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones KR, Myers B, Herman JP (2011) Stimulation of the prelimbic cortex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. Physiol Behav 104:266–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FH, Zai CC, Cordes SP, Roder JC, Wong AH (2013) Abnormal interneuron development in disrupted-in-schizophrenia-1 L100P mutant mice. Mol Brain 6:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81:886–897

    Article  CAS  PubMed  Google Scholar 

  • Letzkus JJ, Wolff SB, Lüthi A (2015) Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:264–276

    Article  CAS  PubMed  Google Scholar 

  • Li P, Fan TT, Zhao RJ, Han Y, Shi L, Sun HQ, Chen SJ, Shi J, Lin X, Lu L (2017) Altered brain network connectivity as a potential endophenotype of schizophrenia. Sci Rep 7:5483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge DJ (2011) The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology 36:1227–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  Google Scholar 

  • Matzeu A, Zamora-Martinez ER, Martin-Fardon R (2014) The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 8:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald RJ, White NM (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107:3–22

    Article  CAS  PubMed  Google Scholar 

  • McQuail JA, Frazier CJ, Bizon JL (2015) Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 21:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS (2010) Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35:2590–2599

    Article  PubMed  PubMed Central  Google Scholar 

  • Morshedi MM, Meredith GE (2007) Differential laminar effects of amphetamine on prefrontal parvalbumin interneurons. Neuroscience 149:617–624

    Article  CAS  PubMed  Google Scholar 

  • Olton DS, Papas BC (1979) Spatial memory and hippocampal function. Neuropsychologia 17:669–682

    Article  CAS  PubMed  Google Scholar 

  • Otto T, Wolf D, Walsh TJ (1997) Combined lesions of perirhinal and entorhinal cortex impair rats’ performance in two versions of the spatially guided radial-arm maze. Neurobiol Learn Mem 68:21–31

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, White NM (1990) Lesions of the caudate nucleus selectively impair “reference memory” acquisition in the radial maze. Behav Neural Biol 53:39–50

    Article  CAS  PubMed  Google Scholar 

  • Paine TA, Slipp LE, Carlezon WA (2011) Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology 36:1703–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paine TA, O’Hara A, Plaut B, Lowes DC (2015) Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task. Psychopharmacology 232:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Paine TA, Swedlow N, Swetschinski L (2017) Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability. Behav Brain Res 317:542–552

    Article  CAS  PubMed  Google Scholar 

  • Parthoens J, Servaes S, Verhaeghe J, Stroobants S, Staelens S (2015) Prelimbic cortical injections of a GABA agonist and antagonist: in vivo quantification of the effect in the rat brain using [(18)F] FDG MicroPET. Mol Imaging Biol 17:856–864

    Article  CAS  PubMed  Google Scholar 

  • Pehrson AL, Bondi CO, Totah NK, Moghaddam B (2013) The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention. Psychopharmacology 225:31–39

    Article  CAS  PubMed  Google Scholar 

  • Pezze M, McGarrity S, Mason R, Fone KC, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34:7931–7946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi PT, Floresco SB (2014) Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology 39:2473–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi PT, Khayambashi S, Schluter MG, Kutarna A, Floresco SB (2016) Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: relevance for psychiatric disorders. Neuropharmacology 101:279–290

    Article  CAS  PubMed  Google Scholar 

  • Pouzet B, Welzl H, Gubler MK, Broersen L, Veenman CL, Feldon J, Rawlins JN, Yee BK (1999) The effects of NMDA-induced retrohippocampal lesions on performance of four spatial memory tasks known to be sensitive to hippocampal damage in the rat. Eur J Neurosci 11:123–140

    Article  CAS  PubMed  Google Scholar 

  • Prasad JA, Chudasama Y (2013) Viral tracing identifies parallel disynaptic pathways to the hippocampus. J Neurosci 33:8494–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1233

    Article  CAS  PubMed  Google Scholar 

  • Rowland LM, Krause BW, Wijtenburg SA, McMahon RP, Chiappelli J, Nugent KL, Nisonger SJ, Korenic SA, Kochunov P, Hong LE (2016) Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry 21:198–204

    Article  CAS  PubMed  Google Scholar 

  • Schacter GB, Yang CR, Innis NK, Mogenson GJ (1989) The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Res 494:339–349

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S, Mackie I, Brandon NJ, Marquis KL, Day M, Hurko O, McCaig CD, Riedel G, St Clair D (2008) Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 28:10893–10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spieker EA, Astur RS, West JT, Griego JA, Rowland LM (2012) Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia. Schizophr Res 135:84–89

    Article  PubMed  Google Scholar 

  • Stokes KA, Best PJ (1988) Mediodorsal thalamic lesions impair radial maze performance in the rat. Behav Neurosci 102:294–300

    Article  CAS  PubMed  Google Scholar 

  • Stokes KA, Best PJ (1990) Mediodorsal thalamic lesions impair “reference” and “working” memory in rats. Physiol Behav 47:471–476

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 43:970–977

    Article  PubMed  Google Scholar 

  • Tremblay R, Lee S, Rudy B (2016) GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:260–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouche S, Perestenko PV, van de Ven GM, Bratley CT, McNamara CG, Campo-Urriza N, Black SL, Reijmers LG, Dupret D (2016) Recoding a cocaine-place memory engram to a neutral engram in the hippocampus. Nat Neurosci 19:564–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse M, Auger ML, Floresco SB (2015a) Alterations in gating of hippocampal and amygdalar inputs to the nucleus accumbens induced by disinhibition of the prefrontal cortex. Society for Neuroscience, Chicago

    Google Scholar 

  • Tse MT, Piantadosi PT, Floresco SB (2015b) Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 77:929–939

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, O’Donnell P (2008) A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci 28:12691–12699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vann SD, Brown MW, Aggleton JP (2000a) Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 101:983–991

    Article  CAS  PubMed  Google Scholar 

  • Vann SD, Brown MW, Erichsen JT, Aggleton JP (2000b) Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. J Neurosci 20:2711–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187

    Article  PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    Article  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Rodriguez JJ (2012) Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry. Neuroscience 219:120–136

    Article  CAS  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    Article  CAS  PubMed  Google Scholar 

  • White NM, McDonald RJ (1993) Acquisition of a spatial conditioned place preference is impaired by amygdala lesions and improved by fornix lesions. Behav Brain Res 55:269–281

    Article  CAS  PubMed  Google Scholar 

  • Yagi S, Chow C, Lieblich SE, Galea LA (2016) Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus. Hippocampus 26:87–101

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS (2013) Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 74:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research (MOP 130393) to SBF. We thank Stephanie Lieblich and Paula Duarte-Guterman for their technical guidance in conducting these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan B. Floresco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Research involving human and/or animal participants

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auger, M.L., Meccia, J., Galea, L.A.M. et al. Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Struct Funct 224, 171–190 (2019). https://doi.org/10.1007/s00429-018-1769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1769-z

Keywords

Navigation