Skip to main content
Log in

Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Very preterm infants (≤ 31 weeks gestational age) are at high risk for brain injury and delayed development. Applying functional connectivity and graph theory methods to resting state MRI data (fcMRI), we tested the hypothesis that preterm infants would demonstrate alterations in connectivity measures both globally and in specific networks related to motor, language and cognitive function, even when there is no anatomical imaging evidence of injury. Fifty-one healthy full-term controls and 24 very preterm infants without significant neonatal brain injury, were evaluated at term-equivalent age with fcMRI. Preterm subjects showed lower functional connectivity from regions associated with motor, cognitive, language and executive function, than term controls. Examining brain networks using graph theory measures of functional connectivity, very preterm infants also exhibited lower rich-club coefficient and assortativity but higher small-worldness and no significant difference in modularity when compared to term infants. The findings provide evidence that functional connectivity exhibits deficits soon after birth in very preterm infants in key brain networks responsible for motor, language and executive functions, even in the absence of anatomical lesions. These functional network measures could serve as prognostic biomarkers for later developmental disabilities and guide decisions about early interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AW, Marois R, Colson ER, Peterson BS, Duncan CC, Ehrenkranz RA, Schneider KC, Gore JC, Ment LR (2001) Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging 19:1–5

    Article  PubMed  Google Scholar 

  • Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101

    Article  PubMed  Google Scholar 

  • Botting N, Powls A, Cooke RW, Marlow N (1998) Cognitive and educational outcome of very-low-birthweight children in early adolescence. Dev Med Child Neurol 40(10):652–660

    Article  CAS  PubMed  Google Scholar 

  • Breeman LD, Jaekel J, Baumann N, Bartmann P, Wolke D (2015) Preterm cognitive function into adulthood. Pediatrics 136(3):415–423

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336

    Article  CAS  PubMed  Google Scholar 

  • Burnett AC, Scratch SE, Lee KJ, Cheong J, Searle K, Hutchinson E, De Luca C, Davey M-A, Roberts G, Doyle LW (2015) Executive function in adolescents born < 1000 g or < 28 weeks: a prospective cohort study. Pediatrics 135(4):e826–e834

    Article  PubMed  Google Scholar 

  • Cao M, Wang J-H, Dai Z-J, Cao X-Y, Jiang L-L, Fan F-M, Song X-W, Xia M-R, Shu N, Dong Q (2014) Topological organization of the human brain functional connectome across the lifespan. Dev Cogn Neurosci 7:76–93

    Article  PubMed  Google Scholar 

  • Chai XJ, Castañón AN, Öngür D, Whitfield-Gabrieli S (2012) Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2):1420–1428

    Article  PubMed  Google Scholar 

  • Chau V, Synnes A, Grunau RE, Poskitt KJ, Brant R, Miller SP (2013) Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 81(24):2082–2208

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P (2004) Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp Neurol 190:44–51

    Article  Google Scholar 

  • Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci 105(39):15160–15165

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kieviet JF, van Elburg RM, Lafeber HN, Oosterlaan J (2012) Attention problems of very preterm children compared with age-matched term controls at school-age. J Pediatr 161(5):824–829. https://doi.org/10.1016/j.jpeds.2012.05.010

    Article  PubMed  Google Scholar 

  • Degnan AJ, Wisnowski JL, Choi S, Ceschin R, Bhushan C, Leahy RM, Corby P, Schmithorst VJ, Panigrahy A (2015) Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity. Neuroreport 26(1):22–26

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    Article  CAS  PubMed  Google Scholar 

  • Deshpande AK, Tan L, Lu LJ, Altaye M, Holland SK (2016) fMRI as a preimplant objective tool to predict postimplant oral language outcomes in children with cochlear implants. Ear Hear 37:e263–e272

    Article  PubMed  Google Scholar 

  • Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, Craddock RC, Luna B, Leventhal BL, Zuo X-N (2014) Unraveling the miswired connectome: a developmental perspective. Neuron 83(6):1335–1353

    Article  PubMed  PubMed Central  Google Scholar 

  • DiFrancesco MW, Robertson SA, Karunanayaka P, Holland SK (2013) BOLD fMRI in infants under sedation: comparing the impact of pentobarbital and propofol on auditory and language activation. J Magn Reson Imaging 38:1184–1195

    Article  PubMed  Google Scholar 

  • Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M, Aljabar P, Nunes RG (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci 107(46):20015–20020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgin JO, Inder TE, Anderson PJ, Hood KM, Clark CA, Woodward LJ (2008) Executive functioning in preschool children born very preterm: relationship with early white matter pathology. J Int Neuropsychol Soc 14(01):90–101

    Article  PubMed  Google Scholar 

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26(2):471–479

    Article  PubMed  Google Scholar 

  • Fischi-Gómez E, Vasung L, Meskaldji D-E, Lazeyras F, Borradori-Tolsa C, Hagmann P, Barisnikov K, Thiran J-P, Hüppi PS (2015) Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex 25(9):2793–2805

    Article  PubMed  Google Scholar 

  • Foster-Cohen SH, Friesen MD, Champion PR, Woodward LJ (2010) High prevalence/low severity language delay in preschool children born very preterm. J Dev Behav Pediatr 31(8):658–667

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Friederici AD, Gierhan SM (2013) The language network. Curr Opin Neurobiol 23(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT (2015) The (in) stability of functional brain network measures across thresholds. Neuroimage 118:651–661

    Article  PubMed  Google Scholar 

  • Goldberg G (1985) Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci 8(4):567–588

    Article  Google Scholar 

  • Gozzo Y, Vohr B, Lacadie C, Hampson M, Katz KH, Maller-Kesselman J, Schneider KC, Peterson BS, Rajeevan N, Makuch RW (2009) Alterations in neural connectivity in preterm children at school age. Neuroimage 48(2):458–463

    Article  PubMed  Google Scholar 

  • Hack M (2009) Adult outcomes of preterm children. J Dev Behav Pediatr 30(5):460–470

    Article  PubMed  Google Scholar 

  • He L, Parikh NA (2016) Brain functional network connectivity development in very preterm infants: the first 6 months. Early Hum Dev 98:29–35

    Article  PubMed  Google Scholar 

  • Holland S, Choo D, Ret J, Hilbert L, Dunn R, Schmithorst V (2004) fMRI of severe to profoundly hearing-impaired infants and toddlers under sedation. Int Congr Ser 1273:383–386. https://doi.org/10.1016/j.ics.2004.09.002. ISSN 0531-5131

    Article  Google Scholar 

  • Holland SK, Vannest J, Mecoli M, Jacola LM, Tillema J-M, Karunanayaka PR, Schmithorst VJ, Yuan W, Plante E, Byars AW (2007) Functional MRI of language lateralization during development in children. Int J Audiol 46:533–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682

    Article  PubMed  Google Scholar 

  • Karunanayaka PR, Holland SK, Schmithorst VJ, Solodkin A, Chen EE, Szaflarski JP, Plante E (2007) Age-related connectivity changes in fMRI data from children listening to stories. Neuroimage 34:349–360

    Article  PubMed  Google Scholar 

  • Kerr-Wilson C, Mackay D, Smith G, Pell J (2012) Meta-analysis of the association between preterm delivery and intelligence. J Public Health 34(2):209–216

    Article  CAS  Google Scholar 

  • Keunen K, Counsell SJ, Benders MJ (2017) The emergence of functional architecture during early brain development. Neuroimage 160:2–14

    Article  PubMed  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH, Scheinost D, Lacadie C, Sze G, Schneider KC, Dai F, Constable RT, Ment LR (2015) Adaptive mechanisms of developing brain: cerebral lateralization in the prematurely-born. Neuroimage 108:144–150

    Article  PubMed  Google Scholar 

  • Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci 106(11):4489–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  PubMed  Google Scholar 

  • Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo B, Gilmore AW, Nelson SM, Berg JJ, Greene DJ (2016) On the stability of BOLD fMRI correlations. Cereb Cortex 27(10):4719–4732

    PubMed Central  Google Scholar 

  • Lawrence EJ, McGuire PK, Allin M, Walshe M, Giampietro V, Murray RM, Rifkin L, Nosarti C (2010) The very preterm brain in young adulthood: the neural correlates of verbal paired associate learning. J Pediatr 156(6):889–895

    Article  PubMed  Google Scholar 

  • Lee JD, Park H-J, Park ES, Oh M-K, Park B, Rha D-W, Cho S-R, Kim EY, Park JY, Kim CH (2011) Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia. Brain 134(4):1199–1210

    Article  PubMed  Google Scholar 

  • Liu Y, Balériaux D, Kavec M, Metens T, Absil J, Denolin V, Pardou A, Avni F, Van Bogaert P, Aeby A (2010) Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. Neuroimage 51(2):783–788

    Article  PubMed  Google Scholar 

  • Lo C-Y, Wang P-N, Chou K-H, Wang J, He Y, Lin C-P (2010) Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J Neurosci 30(50):16876–16885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubsen J, Vohr B, Myers E, Hampson M, Lacadie C, Schneider KC, Katz KH, Constable RT, Ment LR (2011) Microstructural and functional connectivity in the developing preterm brain. Semin Perinatol 35(1):34–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Malviya S, Voepel-Lewis T, Tait AR (2006) A comparison of observational and objective measures to differentiate depth of sedation in children from birth to 18 years of age. Anesth Analg 102:389–394

    Article  PubMed  Google Scholar 

  • Malviya S, Voepel-Lewis T, Tait AR, Watcha MF, Sadhasivam S, Friesen RH (2007) Effect of age and sedative agent on the accuracy of bispectral index in detecting depth of sedation in children. Pediatrics 120:e461–e470

    Article  PubMed  Google Scholar 

  • Månsson J, Stjernqvist K (2014) Children born extremely preterm show significant lower cognitive, language and motor function levels compared with children born at term, as measured by the Bayley-III at 2.5 years. Acta Paediatr 103(5):504–511

    Article  PubMed  Google Scholar 

  • Ment LR, Peterson BS, Vohr B, Allan W, Schneider KC, Lacadie C, Katz KH, Maller-Kesselman J, Pugh K, Duncan CC (2006) Cortical recruitment patterns in children born prematurely compared with control subjects during a passive listening functional magnetic resonance imaging task. J Pediatr 149(4):490–498 (e492)

    Article  PubMed  PubMed Central  Google Scholar 

  • Merhar SL, Gozdas E, Tkach JA, Harpster KL, Schwartz TL, Yuan W, Kline-Fath BM, Leach JL, Altaye M, Holland SK (2016) Functional and structural connectivity of the visual system in infants with perinatal brain injury. Pediatr Res 80:43

    Article  PubMed  Google Scholar 

  • Moore T, Hennessy EM, Myles J, Johnson SJ, Draper ES, Costeloe KL, Marlow N (2012) Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 345:e7961

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905

    Article  PubMed  Google Scholar 

  • Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, Pugh KR, Katz KH, Schneider KC, Makuch RW, Constable RT (2010) Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage 51(4):1445–1452

    Article  PubMed  Google Scholar 

  • Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701

    Article  CAS  PubMed  Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh NA (2016) Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin Perinatol 40(8):530–541. https://doi.org/10.1053/j.semperi.2016.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel AM, Cahill LD, Ret J, Schmithorst V, Choo D, Holland S (2007) Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg 133:677–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672

    Article  CAS  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2013) Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76:439–441

    Article  PubMed  Google Scholar 

  • Power JD, Schlaggar BL, Petersen SE (2015) Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105:536–551

    Article  PubMed  Google Scholar 

  • Redcay E, Kennedy DP, Courchesne E (2007) fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage 38:696–707

    Article  PubMed  Google Scholar 

  • Rogers CE, Sylvester CM, Mintz C, Kenley JK, Shimony JS, Barch DM, Smyser CD (2017) Neonatal amygdala functional connectivity at rest in healthy and preterm infants and early internalizing symptoms. J Am Acad Child Adolesc Psychiatry 56(2):157–166

    Article  PubMed  Google Scholar 

  • Rowlands MA, Scheinost D, Lacadie C, Vohr B, Li F, Schneider KC, Constable RT, Ment LR (2016) Language at rest: a longitudinal study of intrinsic functional connectivity in preterm children. Neuroimage Clin 11:149–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludağ K, Eickhoff SB, Fink GR, Grefkes C (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33:1107–1123

    Article  PubMed  Google Scholar 

  • Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, Pugh KR, Makuch RW, Reiss AL, Constable RT (2009) Alterations in functional connectivity for language in prematurely born adolescents. Brain 132(3):661–670

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheinost D, Benjamin J, Lacadie C, Vohr B, Schneider KC, Ment LR, Papademetris X, Constable RT (2012) The intrinsic connectivity distribution: a novel contrast measure reflecting voxel level functional connectivity. Neuroimage 62(3):1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Scheinost D, Kwon SH, Shen X, Lacadie C, Schneider KC, Dai F, Ment LR, Constable RT (2015) Preterm birth alters neonatal, functional rich club organization. Brain Struct Funct 221(6):3211–3222

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmithorst VJ, Holland SK, Plante E (2006) Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage 29:254–266

    Article  PubMed  Google Scholar 

  • Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D (2010a) Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 49(1):391–400

    Article  PubMed  Google Scholar 

  • Shi F, Yap P-T, Fan Y, Gilmore JH, Lin W, Shen D (2010b) Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Neuroimage 51(2):684–693

    Article  PubMed  Google Scholar 

  • Shi F, Yap P-T, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-old. PLoS One 6(4):e18746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20:2852–2862

    Article  PubMed  PubMed Central  Google Scholar 

  • Smyser CD, Snyder AZ, Shimony JS, Mitra A, Inder TE, Neil JJ (2014) Resting-state network complexity and magnitude are reduced in prematurely born infants. Cereb Cortex 26:322–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Synnes A, Anderson PJ, Grunau RE, Dewey D, Moddemann D, Tin W, Davis PG, Doyle LW, Foster G, Khairy M (2015) Predicting severe motor impairment in preterm children at age 5 years. Arch Dis Childhood 100:748–753 (archdischild-2014-307695)

    Article  Google Scholar 

  • Szaflarski JP, Altaye M, Rajagopal A, Eaton K, Meng X, Plante E, Holland SK (2012) A 10-year longitudinal fMRI study of narrative comprehension in children and adolescents. Neuroimage 63:1188–1195

    Article  PubMed  Google Scholar 

  • Tan L, Chen Y, Maloney TC, Caré MM, Holland SK, Lu LJ (2013) Combined analysis of sMRI and fMRI imaging data provides accurate disease markers for hearing impairment. Neuroimage Clin 3:416–428

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Kahn RS, Goñi J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci 109(28):11372–11377

    Article  PubMed  PubMed Central  Google Scholar 

  • van’t Hooft J, van der Lee JH, Opmeer BC, Aarnoudse-Moens CS, Leenders AG, Mol BWJ, de Haan TR (2015) Predicting developmental outcomes in premature infants by term equivalent MRI: systematic review and meta-analysis. Syst Rev 4(1):71

    Article  Google Scholar 

  • Vannest JJ, Karunanayaka PR, Altaye M, Schmithorst VJ, Plante EM, Eaton KJ, Rasmussen JM, Holland SK (2009) Comparison of fMRI data from passive listening and active-response story processing tasks in children. J Magn Reson Imaging 29:971–976

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannest J, Rajagopal A, Cicchino ND, Franks-Henry J, Simpson SM, Lee G, Altaye M, Sroka C, Holland SK, Consortium CA (2014) Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics 45:370–377

    Article  PubMed  Google Scholar 

  • Vigneau M, Beaucousin V, Herve P-Y, Duffau H, Crivello F, Houde O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  • Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141

    Article  PubMed  Google Scholar 

  • Wilke M, Holland SK, Ball WS (2003) Language processing during natural sleep in a 6-year-old boy, as assessed with functional MR imaging. Am J Neuroradiol 24:42–44

    PubMed  PubMed Central  Google Scholar 

  • Wilke M, Hauser TK, Krägeloh-Mann I, Lidzba K (2014) Specific impairment of functional connectivity between language regions in former early preterms. Hum Brain Mapp 35(7):3372–3384

    Article  PubMed  Google Scholar 

  • Woodward LJ, Moor S, Hood KM, Champion PR, Foster-Cohen S, Inder TE, Austin NC (2009) Very preterm children show impairments across multiple neurodevelopmental domains by age 4 years. Arch Dis Childhood Fetal Neonatal Ed 94(5):339–344

    Article  Google Scholar 

Download references

Funding

This study was funded in part by the Research Institute at Nationwide Children’s and the National Institutes of Neurological Disorders and Stroke under NIH Grant 5R01-NS094200 to PI: Nehal Parikh, DO, MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott K. Holland.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Nationwide Children’s Hospital (Columbus, Ohio, USA) Institutional Review Board approved this study and written parental informed consent was obtained for every subject prior to imaging.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozdas, E., Parikh, N.A., Merhar, S.L. et al. Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?. Brain Struct Funct 223, 3665–3680 (2018). https://doi.org/10.1007/s00429-018-1707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1707-0

Keywords

Navigation