Advertisement

Brain Structure and Function

, Volume 223, Issue 6, pp 2785–2808 | Cite as

Pattern separation in the hippocampus: distinct circuits under different conditions

  • Randa Kassab
  • Frédéric Alexandre
Original Article

Abstract

Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG), supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here, we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, control the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.

Keywords

Computational model Dentate gyrus Episodic memory Hippocampus Pattern separation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Acsády L, Kamondi A, Sik A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18(9):3386–3403CrossRefPubMedGoogle Scholar
  2. Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61(2):187–202CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alme C, Buzzetti R, Marrone D, Leutgeb J, Chawla M, Schaner M et al (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20(10):1109–1123CrossRefPubMedGoogle Scholar
  4. Aloisi A, Casamenti F, Scali C, Carli GPGG (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748(1–2):219–226Google Scholar
  5. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amari S (1989) Characteristics of sparsely encoded associative memory. Neural Netw 2(6):451–457CrossRefGoogle Scholar
  7. Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13(2):222–238PubMedGoogle Scholar
  8. Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319(5870):1640–1642CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berron D, Schütze H, Cardenas-Blanco AMA, Kuijf HJ, Kumaran D, Düzel E (2016) Strong evidence for pattern separation in human dentate gyrus. J Neurosci 36(29):7569–7579CrossRefPubMedGoogle Scholar
  10. Bijak M, Misgeld U (1995) Adrenergic modulation of hilar neuron activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 67(3):541–550CrossRefGoogle Scholar
  11. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4(4):393–402CrossRefPubMedGoogle Scholar
  13. Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366(2):271–292CrossRefGoogle Scholar
  14. Chancey HJ, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–2354CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK et al (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15(5):579–586CrossRefPubMedGoogle Scholar
  16. Clelland C, Choi M, Romberg C, Clemenson GJ, Fragniere A, Tyers P et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:3CrossRefPubMedPubMedCentralGoogle Scholar
  18. Daumas S, Halley H, Lassalle J-M (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in c57bl/6j mice. Eur J Neurosci 20(2):597–600CrossRefPubMedGoogle Scholar
  19. Daumas S, Ceccom J, Halley H, Francés B, Lassalle J-M (2009) Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learn Mem 16(8):504–507CrossRefPubMedGoogle Scholar
  20. de Almeida L, Idiart M, Lisman JE (2007) Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem 14(11):795–806CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deller T, Martinez A, Nitsch R, Frotscher M (1996) A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J Neurosci 16(10):3322–3333CrossRefPubMedGoogle Scholar
  22. Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dieni C, Nietz AK, Panichi R, Wadiche J, Overstreet-Wadiche L (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33(49):19131–19142CrossRefPubMedPubMedCentralGoogle Scholar
  24. Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23(8):649–655CrossRefGoogle Scholar
  25. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120CrossRefGoogle Scholar
  26. Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470CrossRefPubMedGoogle Scholar
  27. Galimberti I, Bednarek E, Donato F, Caroni P (2010) Epha4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65(5):627–642CrossRefGoogle Scholar
  28. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566CrossRefGoogle Scholar
  29. Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and ca1. Hippocampus 11(6):626–636CrossRefGoogle Scholar
  30. Gluck MA, Meeter M, Myers CE (2003) Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends Cognit Sci 7(6):269–276CrossRefGoogle Scholar
  31. Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26CrossRefPubMedGoogle Scholar
  32. Harley CW (2007) Norepinephrine and the dentate gyrus. Prog Brain Res 163:299–318CrossRefPubMedGoogle Scholar
  33. Hasselmo ME, Wyble BP, Wallenstein GV (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6(6):693–708CrossRefPubMedGoogle Scholar
  34. Hasselmo ME, Bodelón C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817CrossRefPubMedGoogle Scholar
  35. Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4(4):422–438CrossRefGoogle Scholar
  36. Hunsaker MR, Rosenberg JS, Kesner RP (2008) The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18(10):1064–1073CrossRefPubMedGoogle Scholar
  37. Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from ca3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623CrossRefPubMedGoogle Scholar
  38. Jackson MB, Scharfman HE (1996), Positive feedback ) from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76(1):601–616CrossRefGoogle Scholar
  39. Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K et al. (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76(6):1189–1200CrossRefGoogle Scholar
  40. Kassab R, Alexandre F (2015) Integration of exteroceptive and interoceptive information within the hippocampus: a computational study. Front Syst Neurosci 5(9):87Google Scholar
  41. Kee N, Teixeira C, Wang A, Frankland P (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362CrossRefGoogle Scholar
  42. Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106:10805–10810CrossRefGoogle Scholar
  43. Kleschevnikov AM, Routtenberg A (2003) Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur J Neurosci 17(12):2690–2702CrossRefGoogle Scholar
  44. Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289–341CrossRefPubMedGoogle Scholar
  45. Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71(3):512–528CrossRefGoogle Scholar
  46. Larimer P, Strowbridge BW (2008) Nonrandom local circuits in the dentate gyrus. J Neurosci 28(47):12212–12223CrossRefPubMedPubMedCentralGoogle Scholar
  47. Larimer P, Strowbridge BW (2010) Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13(2):213–222CrossRefGoogle Scholar
  48. Lassalle JM, Bataille T, Halley H (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol Learn Mem 73(3):243–257CrossRefGoogle Scholar
  49. Leal SL, Tighe SK, Jones CK, Yassa MA (2014) Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus 24(9):1146–1155CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lee I, Kesner RP (2004) Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14(1):66–76CrossRefPubMedGoogle Scholar
  51. Lee I, Hunsaker M, Kesner R (2005) The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119(1):145–153CrossRefGoogle Scholar
  52. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961–966CrossRefPubMedGoogle Scholar
  53. Li X, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal ca3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208CrossRefPubMedGoogle Scholar
  54. Lisman JE (1999), Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentateCA3 interactions. Neuron 22(2):233–242CrossRefGoogle Scholar
  55. Lopez-Rojas J, Kreutz MR (2016) Mature granule cells of the dentate gyrus—passive bystanders or principal performers in hippocampal function. Neurosci Biobehav Rev 64:167–174CrossRefPubMedGoogle Scholar
  56. Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15(6):691–696CrossRefPubMedGoogle Scholar
  57. Marr D (1969) A theory of cerebellar cortex. J Physiol 202(2):437–470CrossRefPubMedPubMedCentralGoogle Scholar
  58. Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262(841):23–81CrossRefGoogle Scholar
  59. McBain CJ (2008) Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog Brain Res 169:225–240CrossRefPubMedPubMedCentralGoogle Scholar
  60. McHugh T, Jones M, Quinn J, Balthasar N, Coppari R, Elmquist J et al (2007) Dentate gyrus nmda receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99CrossRefPubMedGoogle Scholar
  61. McNaughton BL, Nadel L (1990) Hebb-Marr networks and the neurobiological representation of action in space. In: Gluck MA, Rumelhart DE (eds) Neuroscience and connectionist theory. L. Erlbaum, Hillsdale, pp 1–64Google Scholar
  62. McNaughton BL, Barnes CA, Mizomori SY, Green EJ, Sharp PE (1991). The contribution of granule cells to spatial representation in hippocampal circuits: a puzzle. In: Morrell F (ed) Kindling and synaptic plasticity: the legacy of graham goddard. Springer, Boston, pp 110–123Google Scholar
  63. Morris RGM (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356(1413):1453–1465CrossRefPubMedPubMedCentralGoogle Scholar
  64. Moser EI, Moser EI (2003) One-shot memory in hippocampal CA3 networks. Neuron 38(2):147–148CrossRefPubMedGoogle Scholar
  65. Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19(4):321–337CrossRefPubMedPubMedCentralGoogle Scholar
  66. Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21(11):1190–1215CrossRefGoogle Scholar
  67. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201CrossRefPubMedPubMedCentralGoogle Scholar
  68. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4(6):661–682Google Scholar
  69. O’Reilly RC, Rudy JW (2001) Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108(2):311–345CrossRefPubMedGoogle Scholar
  70. Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35(29):10600–10612CrossRefPubMedGoogle Scholar
  71. Ribak CE, Peterson GM (1991) Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1(4):355–364CrossRefGoogle Scholar
  72. Rolls E (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, OxfordGoogle Scholar
  74. Römer B, Krebs J, Overall RW, Fabel K, Babu H, Overstreet-Wadiche L et al (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. co-regulation by activity. Front Neurosci 5:107CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B et al (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518CrossRefPubMedGoogle Scholar
  76. Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11(6):1660–1673CrossRefPubMedGoogle Scholar
  77. Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180CrossRefPubMedGoogle Scholar
  78. Scharfman HE, (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74(1):179–194CrossRefGoogle Scholar
  79. Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637Google Scholar
  80. Scharfman HE (2016) The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 17(9):562–575CrossRefPubMedPubMedCentralGoogle Scholar
  81. Scharfman H, Sollas A, Smith K, Jackson M, Goodman J (2002) Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 454(4):424–439CrossRefGoogle Scholar
  82. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21CrossRefPubMedPubMedCentralGoogle Scholar
  83. Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469CrossRefPubMedPubMedCentralGoogle Scholar
  84. Senzai Y, Buzsáki G (2017) Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 93(3):691–704CrossRefPubMedPubMedCentralGoogle Scholar
  85. Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus. a light microscopic and golgi study. J Anat 133(Pt 2):181–195Google Scholar
  86. Toni N, Laplagne D, Zhao C, Lombardi G, Ribak C, Gage F et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907CrossRefPubMedPubMedCentralGoogle Scholar
  87. Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391CrossRefPubMedGoogle Scholar
  88. Treves A, Tashiro A, Witter M, Moser E (2008) What is the mammalian dentate gyrus good for? Neuroscience 154(4):1155–1172CrossRefPubMedGoogle Scholar
  89. Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 382–402Google Scholar
  90. Vago D, Kesner R (2008) Disruption of the direct perforant path input to the ca1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189(2):273–283CrossRefGoogle Scholar
  91. Weisz VI, Argibay PF (2009) A putative role for neurogenesis in neurocomputational terms: inferences from a hippocampal model. Cognition 112(2):229–240CrossRefPubMedGoogle Scholar
  92. West M, Slomianka L, Gundersen H (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497CrossRefGoogle Scholar
  93. Wills T, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723):873–876CrossRefPubMedPubMedCentralGoogle Scholar
  94. Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222(5197):960–962CrossRefPubMedGoogle Scholar
  95. Wiskott L, Rasch M, Kempermann G (2006) A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus 16(3):329–343CrossRefGoogle Scholar
  96. Witter MP (2010) Connectivity of the hippocampus. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits: a computational modelers resource book. Springer, New York, pp 5–26CrossRefGoogle Scholar
  97. Wittner L, Henze DA, Záborszky L, Buzsáki G (2006) Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 24(5):1286–1298CrossRefPubMedGoogle Scholar
  98. Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525CrossRefGoogle Scholar
  99. Yu E, Dengler C, Frausto S, Putt M, Yue C, Takano H et al (2013) Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci 33(7):2947–2960CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INRIABordeaux Sud-OuestTalenceFrance
  2. 2.Institut des Maladies NeurodégénérativesUniversity of Bordeaux, CNRS UMR 5293-Case 28, Centre Broca Nouvelle-AquitaineBordeauxFrance
  3. 3.LaBRI, UMR 5800, CNRS, Bordeaux INPUniversity of BordeauxTalenceFrance

Personalised recommendations