Advertisement

Brain Structure and Function

, Volume 223, Issue 6, pp 2753–2765 | Cite as

Age, sex, and puberty related development of the corpus callosum: a multi-technique diffusion MRI study

  • Sila Genc
  • Charles B. Malpas
  • Gareth Ball
  • Timothy J. Silk
  • Marc L. Seal
Original Article

Abstract

The corpus callosum is integral to the central nervous system, and continually develops with age by virtue of increasing axon diameter and ongoing myelination. Magnetic resonance imaging (MRI) techniques offer a means to disentangle these two aspects of white matter development. We investigate the profile of microstructural metrics across the corpus callosum, and assess the impact of age, sex and pubertal development on these processes. This study made use of two independent paediatric populations. Multi-shell diffusion MRI data were analysed to produce a suite of diffusion tensor imaging, neurite orientation dispersion and density imaging, and apparent fibre density (AFD) metrics. A multivariate profile analysis was performed for each diffusion metric across ten subdivisions of the corpus callosum. All diffusion metrics significantly varied across the length of the corpus callosum. AFD exhibited a strong relationship with age across the corpus callosum (partial η2 = 0.65), particularly in the posterior body of the corpus callosum (partial η2 = 0.72). In addition, females had significantly higher AFD compared with males, most markedly in the anterior splenium (partial η2 = 0.14) and posterior genu (partial η2 = 0.13). Age-matched pubertal group differences were localised to the splenium. We present evidence of a strong relationship between apparent fibre density and age, sex, and puberty during development. These results are consistent with ex vivo studies of fibre morphology, providing insights into the dynamics of axonal development in childhood and adolescence using diffusion MRI.

Keywords

Apparent fibre density White matter Corpus callosum Puberty Development DTI NODDI 

Abbreviations

AFD

Apparent fibre density

AIC

Akaike information criterion

BMI

Body mass index

DTI

Diffusion tensor imaging

DWI

Diffusion-weighted imaging

CI

Confidence interval

CMIND

Cincinnati MR Imaging of NeuroDevelopment

CSD

Constrained spherical deconvolution

FA

Fractional anisotropy

FBA

Fixel-based analysis

FOD

Fibre orientation distribution

GLM

General linear model

MRI

Magnetic resonance imaging

MD

Mean diffusivity

NICAP

Neuroimaging of the Children’s Attention Project

NODDI

Neurite orientation dispersion and density imaging

ODI

Orientation dispersion index

PDS

Pubertal development scale

TE

Echo-time

TR

Repetition time

vic

Intra-cellular volume fraction

Notes

Acknowledgements

Data used in the preparation of this article were obtained from the CMIND Data Repository (Contract #s HHSN275200900018C) and NICAP study (National Health and Medical Research Council; project Grant #1065895). This research and analysis was conducted within the Developmental Imaging research group, Murdoch Children’s Research Institute, supported by The Royal Children’s Hospital Foundation and the Victorian Government’s Operational Infrastructure Support Program.

Compliance with ethical standards

Conflict of interest

All authors disclose no real or potential conflicts of interest.

Studies involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from the parent/guardian of all children in this study. Additionally, informed consent was obtained for adolescents that were aged 18.

Supplementary material

429_2018_1658_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 167 KB)

References

  1. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598(1–2):143–153CrossRefGoogle Scholar
  2. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJM, Dyrby TB (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52(4):1374–1389.  https://doi.org/10.1016/j.neuroimage.2010.05.043 CrossRefGoogle Scholar
  3. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455.  https://doi.org/10.1002/nbm.782 CrossRefGoogle Scholar
  4. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, Cesarini D, Chambers CD, Clyde M, Cook TD, De Boeck P, Dienes Z, Dreber A, Easwaran K, Efferson C, Fehr E, Fidler F, Field AP, Forster M, George EI, Gonzalez R, Goodman S, Green E, Green DP, Greenwald AG, Hadfield JD, Hedges LV, Held L, Hua Ho T, Hoijtink H, Hruschka DJ, Imai K, Imbens G, Ioannidis JPA, Jeon M, Jones JH, Kirchler M, Laibson D, List J, Little R, Lupia A, Machery E, Maxwell SE, McCarthy M, Moore DA, Morgan SL, Munafó M, Nakagawa S, Nyhan B, Parker TH, Pericchi L, Perugini M, Rouder J, Rousseau J, Savalei V, Schönbrodt FD, Sellke T, Sinclair B, Tingley D, Van Zandt T, Vazire S, Watts DJ, Winship C, Wolpert RL, Xie Y, Young C, Zinman J, Johnson VE (2018) Redefine statistical significance. Nat Hum Behav 2(1):6–10.  https://doi.org/10.1038/s41562-017-0189-z CrossRefGoogle Scholar
  5. Berman S, West KL, Does MD, Yeatman JD, Mezer AA (2017) Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex. Neuroimage.  https://doi.org/10.1016/j.neuroimage.2017.06.076 Google Scholar
  6. Bjornholm L, Nikkinen J, Kiviniemi V, Nordstrom T, Niemela S, Drakesmith M, Evans JC, Pike GB, Veijola J, Paus T (2017) Structural properties of the human corpus callosum: multimodal assessment and sex differences. Neuroimage 152:108–118.  https://doi.org/10.1016/j.neuroimage.2017.02.056 CrossRefGoogle Scholar
  7. Byrne ML, Whittle S, Vijayakumar N, Dennison M, Simmons JG, Allen NB (2017) A systematic review of adrenarche as a sensitive period in neurobiological development and mental health. Dev Cogn Neurosci 25:12–28.  https://doi.org/10.1016/j.dcn.2016.12.004 CrossRefGoogle Scholar
  8. Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, Pantano P, Innocenti GM (2013) Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 33(36):14501-+.  https://doi.org/10.1523/jneurosci.0761-13.2013 CrossRefGoogle Scholar
  9. Chang YS, Owen JP, Pojman NJ, Thieu T, Bukshpun P, Wakahiro MLJ, Berman JI, Roberts TPL, Nagarajan SS, Sherr EH, Mukherjee P (2015) White matter changes of neurite density and fiber orientation dispersion during human brain maturation. PLoS One 10(6):e0123656.  https://doi.org/10.1371/journal.pone.0123656 CrossRefGoogle Scholar
  10. Chang EH, Argyelan M, Aggarwal M, Chandon T-SS, Karlsgodt KH, Mori S, Malhotra AK (2017) The role of myelination in measures of white matter integrity: combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains. Neuroimage 147:253–261.  https://doi.org/10.1016/j.neuroimage.2016.11.068 CrossRefGoogle Scholar
  11. Chavarria MC, Sanchez FJ, Chou YY, Thompson PM, Luders E (2014) Puberty in the corpus callosum. Neuroscience 265:1–8.  https://doi.org/10.1016/j.neuroscience.2014.01.030 CrossRefGoogle Scholar
  12. Genc S, Malpas CB, Holland SK, Beare R, Silk TJ (2017a) Neurite density index is sensitive to age related differences in the developing brain. Neuroimage 148:373–380.  https://doi.org/10.1016/j.neuroimage.2017.01.023 CrossRefGoogle Scholar
  13. Genc S, Seal ML, Dhollander T, Malpas CB, Hazell P, Silk TJ (2017b) White matter alterations at pubertal onset. Neuroimage 156:286–292.  https://doi.org/10.1016/j.neuroimage.2017.05.017 CrossRefGoogle Scholar
  14. Grumbach MM, Styne DM (1998) Puberty: ontogeny, neuroendocrinology, physiology, and disorders. Williams Textb Endocrinol 9:1509–1625Google Scholar
  15. Herting MM, Kim R, Uban KA, Kan E, Binley A, Sowell ER (2017) Longitudinal changes in pubertal maturation and white matter microstructure. Psychoneuroendocrinology 81:70–79.  https://doi.org/10.1016/j.psyneuen.2017.03.017 CrossRefGoogle Scholar
  16. Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow TJ (1999) The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122(Pt 1):99–110CrossRefGoogle Scholar
  17. Holland SKVJ., Schmithorst VJ, Wagner M, Lee GR, Rajagopal A, Sroka MC, Felicelli N, Rupert A, Clark K, Toga AW, Freund LS, C-MIND Consortium (2015) The C-MIND project: normative MRI and behavioral data from children from birth to 18 years. In: 21st annual meeting of the organization for human brain mapping (OHBM), Honolulu, HA, 8–12 June 2015Google Scholar
  18. Horowitz A, Barazany D, Tavor I, Bernstein M, Yovel G, Assaf Y (2015) In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct Funct 220(3):1777–1788.  https://doi.org/10.1007/s00429-014-0871-0 CrossRefGoogle Scholar
  19. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254.  https://doi.org/10.1016/j.neuroimage.2012.06.081 CrossRefGoogle Scholar
  20. Juraska JM, Willing J (2017) Pubertal onset as a critical transition for neural development and cognition. Brain Res 1654 Part B:87–94.  https://doi.org/10.1016/j.brainres.2016.04.012 CrossRefGoogle Scholar
  21. LaMantia A, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10(7):2156–2175CrossRefGoogle Scholar
  22. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947.  https://doi.org/10.1523/jneurosci.5302-10.2011 CrossRefGoogle Scholar
  23. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40(3):1044–1055.  https://doi.org/10.1016/j.neuroimage.2007.12.053 CrossRefGoogle Scholar
  24. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60(1):340–352.  https://doi.org/10.1016/j.neuroimage.2011.11.094 CrossRefGoogle Scholar
  25. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30(6):718–729.  https://doi.org/10.1016/j.neubiorev.2006.06.001 CrossRefGoogle Scholar
  26. Liu F, Vidarsson L, Winter JD, Tran H, Kassner A (2010) Sex differences in the human corpus callosum microstructure: a combined T2 myelin-water and diffusion tensor magnetic resonance imaging study. Brain Res 1343:37–45.  https://doi.org/10.1016/j.brainres.2010.04.064 CrossRefGoogle Scholar
  27. Mah A, Geeraert B, Lebel C (2017) Detailing neuroanatomical development in late childhood and early adolescence using NODDI. PLoS One 12(8):e0182340.  https://doi.org/10.1371/journal.pone.0182340 CrossRefGoogle Scholar
  28. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 30(1):65–91.  https://doi.org/10.1016/j.yfrne.2008.11.002 CrossRefGoogle Scholar
  29. McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245.  https://doi.org/10.1016/j.neuroimage.2013.05.074 CrossRefGoogle Scholar
  30. Mills KL, Goddings A-L, Herting MM, Meuwese R, Blakemore S-J, Crone EA, Dahl RE, Güroğlu B, Raznahan A, Sowell ER, Tamnes CK (2016) Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141:273–281.  https://doi.org/10.1016/j.neuroimage.2016.07.044 CrossRefGoogle Scholar
  31. Mollink J, Kleinnijenhuis M, Cappellen van Walsum A-Mv, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, Jenkinson M, Pallebage-Gamarallage M, Ansorge O, Jbabdi S, Miller KL (2017) Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 157:561–574.  https://doi.org/10.1016/j.neuroimage.2017.06.001 CrossRefGoogle Scholar
  32. Nave K-A (2010) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252CrossRefGoogle Scholar
  33. Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H (2012) The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 25(5):795–805.  https://doi.org/10.1002/nbm.1795 CrossRefGoogle Scholar
  34. Nilsson M, Lasic S, Drobnjak I, Topgaard D, Westin CF (2017) Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion. NMR Biomed 30(7):e3711.  https://doi.org/10.1002/nbm.3711 CrossRefGoogle Scholar
  35. Pangelinan MM, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T (2016) Puberty and testosterone shape the corticospinal tract during male adolescence. Brain Struct Funct 221(2):1083–1094.  https://doi.org/10.1007/s00429-014-0956-9 CrossRefGoogle Scholar
  36. Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72(1):26–35.  https://doi.org/10.1016/j.bandc.2009.06.002 CrossRefGoogle Scholar
  37. Paus T, Toro R (2009) Could sex differences in white matter be explained by g ratio?. Front Neuroanat 3 (14).  https://doi.org/10.3389/neuro.05.014.2009
  38. Perrin JS, Herve PY, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2008) Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J Neurosci 28(38):9519–9524.  https://doi.org/10.1523/jneurosci.1212-08.2008 CrossRefGoogle Scholar
  39. Perrin JS, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Sex differences in the growth of white matter during adolescence. Neuroimage 45(4):1055–1066.  https://doi.org/10.1016/j.neuroimage.2009.01.023 CrossRefGoogle Scholar
  40. Pesaresi M, Soon-Shiong R, French L, Kaplan DR, Miller FD, Paus T (2015) Axon diameter and axonal transport: in vivo and in vitro effects of androgens. Neuroimage 115:191–201.  https://doi.org/10.1016/j.neuroimage.2015.04.048 CrossRefGoogle Scholar
  41. Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A (2012) Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59(4):3976–3994.  https://doi.org/10.1016/j.neuroimage.2011.10.045 CrossRefGoogle Scholar
  42. Raffelt DA, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, Henderson R, Connelly A (2015) Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage 117:40–55.  https://doi.org/10.1016/j.neuroimage.2015.05.039 CrossRefGoogle Scholar
  43. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A (2017) Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage 144 (Pt A):58–73.  https://doi.org/10.1016/j.neuroimage.2016.09.029 CrossRefGoogle Scholar
  44. Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219(5):1773–1785.  https://doi.org/10.1007/s00429-013-0600-0 CrossRefGoogle Scholar
  45. Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational–activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604.  https://doi.org/10.1016/j.yhbeh.2009.03.010 CrossRefGoogle Scholar
  46. Sciberras E, Efron D, Schilpzand EJ, Anderson V, Jongeling B, Hazell P, Ukoumunne OC, Nicholson JM (2013) The Children’s Attention Project: a community-based longitudinal study of children with ADHD and non-ADHD controls. BMC Psychiatry 13:18–18.  https://doi.org/10.1186/1471-244X-13-18 CrossRefGoogle Scholar
  47. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690.  https://doi.org/10.1038/nrn1743 CrossRefGoogle Scholar
  48. Shirtcliff EA, Dahl RE, Pollak SD (2009) Pubertal development: correspondence between hormonal and physical development. Child Dev 80(2):327–337CrossRefGoogle Scholar
  49. Silk TJ, Genc S, Anderson V, Efron D, Hazell P, Nicholson JM, Kean M, Malpas CB, Sciberras E (2016) Developmental brain trajectories in children with ADHD and controls: a longitudinal neuroimaging study. BMC Psychiatry 16:59.  https://doi.org/10.1186/s12888-016-0770-4 CrossRefGoogle Scholar
  50. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang YY, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208-S219.  https://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRefGoogle Scholar
  51. Stikov N, Campbell JSW, Stroh T, Lavelee M, Frey S, Novek J, Nuara S, Ho MK, Bedell BJ, Dougherty RF, Leppert IR, Boudreau M, Narayanan S, Duval T, Cohen-Adad J, Picard PA, Gasecka A, Cote D, Pike GB (2015) In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118:397–405.  https://doi.org/10.1016/j.neuroimage.2015.05.023 CrossRefGoogle Scholar
  52. Vos SB, Jones DK, Viergever MA, Leemans A (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55(4):1566–1576.  https://doi.org/10.1016/j.neuroimage.2011.01.048 CrossRefGoogle Scholar
  53. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70Google Scholar
  54. Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 10(5):764–785.  https://doi.org/10.1016/j.media.2006.06.004 CrossRefGoogle Scholar
  55. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016.  https://doi.org/10.1016/j.neuroimage.2012.03.072 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Paediatrics, Melbourne Medical SchoolThe University of MelbourneParkvilleAustralia
  2. 2.Developmental ImagingMurdoch Children’s Research InstituteParkvilleAustralia
  3. 3.Department of Medical Education, Melbourne Medical SchoolThe University of MelbourneParkvilleAustralia
  4. 4.School of PsychologyDeakin UniversityMelbourneAustralia

Personalised recommendations