Brain Structure and Function

, Volume 223, Issue 4, pp 2025–2038 | Cite as

Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats

  • A. Mannewitz
  • J. Bock
  • S. Kreitz
  • A. Hess
  • J. Goldschmidt
  • H. Scheich
  • Katharina Braun
Original Article

Abstract

Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.

Keywords

Functional imaging Learning and memory Limbic Prefrontal 

Abbreviations

Acb

Nucleus accumbens

Acbsh

n. accumbens—shell region

Acbc

n. accumbens—core region

AH

Anterior hypothalamus

Au1

Primary auditory cortex

Au2

Secondary auditory cortex

BA

Anterior basal amygdala

BNST

Bed nucleus of the stria terminalis

BP

Posterior basal amygdala

CeA

Central amygdala

Cg1

Cingular cortex

CoA

Cortical amygdala

CoM

Corpus mammillare

CPu

Caudate putamen

Ect

Ectorhinal cortex

Ent

Entorhinal cortex

GP

Globus pallidus

Hip

Hippocampus

IC

Inferior colliculus

IL

Infralimbic cortex

aIn

Anterior insular cortex

pIn

Posterior insular cortex

IP

Interpeduncular nucleus

LA

Lateral amygdala

LG

Lateral geniculatum

LH

Lateral hypothalamus

LS

Lateral septum

M1

Primary motor cortex

M2

Secondary motor cortex

MeA

Medial amygdala

MG

Medial geniculatum

MH

Medial hypothalamus

MO

Medial orbitofrontal cortex

MS

Medial septum

ON

Olfactory nucleus

OT

Olfactory tubercle

PAG

Periaqueductal gray

Pir

Piriform cortex

Pn

Pontine nucleus

PRh

Perirhinal cortex

PrL

Prelimbic cortex

PTA

Area pretectalis

PtA

Parietal association cortex

RNc

Raphe nuclei

RSA

Agranular retrosplenial cortex

RSG

Granular retrosplenial cortex

S1BF

Primary somatosensory cortex—barrel cortex

S1FL

Primary somatosensory cortex—forelimbs

S1HL

Primary somatosensory cortex—hindlimbs

S1J

Primary somatosensory cortex—jaw region

S1ULp

Primary somatosensory cortex—upper lip

S2

Secondary somatosensory cortex

SC

Superior colliculus

SF

Septofimbrial nucleus

SG

Subgeniculatum

SN

Substantia nigra

Sub

Subiculum

TeA

Temporal association cortex

Tg

Tegmentum

Th

Thalamus

TS

Triangular septum

TT

Taenia tecta

V1B

Primary visual cortex—binocular area

V1M

Primary visual cortex—monocular area

V2L

Secondary visual cortex—lateral

V2M

Secondary visual cortex—medial

VG

Ventral geniculatum

VO/LO

Ventral/lateral orbitofrontal cortex

VP

Ventral pallidum

VTA

Ventral tegmental area

Notes

Acknowledgements

We thank Madeleine Stiefel for help with editorial work. This work was supported by the Bundesministerium für Bildung und Forschung, Grant No: 01KR1304B (TRANSGEN) to K.B. and Grant No: 01KR1207D (UBICA) to J.B.

References

  1. Alvarez EO, Banzan AM (2011) Functional lateralization of the baso-lateral amygdala neural circuits modulating the motivated exploratory behaviour in rats: role of histamine. Behav Brain Res 218(1):158–164.  https://doi.org/10.1016/j.bbr.2010.11.024 PubMedCrossRefGoogle Scholar
  2. Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330.  https://doi.org/10.1146/annurev.neuro.20.1.303 PubMedCrossRefGoogle Scholar
  3. Baker KB, Kim JJ (2004) Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav Neurosci 118(1):15–23.  https://doi.org/10.1037/0735-7044.118.1.15 PubMedCrossRefGoogle Scholar
  4. Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17(9):379–389PubMedCrossRefGoogle Scholar
  5. Bhattacharya S, Herrera-Molina R, Sabanov V, Ahmed T, Iscru E, Stober F, Richter K, Fischer KD, Angenstein F, Goldschmidt J, Beesley PW, Balschun D, Smalla KH, Gundelfinger ED, Montag D (2017) Genetically induced retrograde amnesia of associative memories after neuroplastin ablation. Biol Psychiatry 81(2):124–135.  https://doi.org/10.1016/j.biopsych.2016.03.2107 PubMedCrossRefGoogle Scholar
  6. Botvinick M, Plaut DC (2002) Representing task context: proposals based on a connectionist model of action. Psychol Res 66(4):298–311.  https://doi.org/10.1007/s00426-002-0103-8 PubMedCrossRefGoogle Scholar
  7. Brito GN, Brito LS (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 36(1–2):127–146PubMedCrossRefGoogle Scholar
  8. Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2(1):51–61.  https://doi.org/10.1038/35049064 PubMedCrossRefGoogle Scholar
  9. Brunjes PC, Illig KR, Meyer EA (2005) A field guide to the anterior olfactory nucleus (cortex). Brain Res Brain Res Rev 50(2):305–335.  https://doi.org/10.1016/j.brainresrev.2005.08.005 PubMedCrossRefGoogle Scholar
  10. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641PubMedCrossRefGoogle Scholar
  11. Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398(2):179–205PubMedCrossRefGoogle Scholar
  12. Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391(3):293–321PubMedCrossRefGoogle Scholar
  13. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedCrossRefGoogle Scholar
  14. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101(1):8–23PubMedCrossRefGoogle Scholar
  15. Choi DC, Maguschak KA, Ye K, Jang SW, Myers KM, Ressler KJ (2010) Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc Natl Acad Sci U S A 107(6):2675–2680.  https://doi.org/10.1073/pnas.0909359107 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Coleman-Mesches K, McGaugh JL (1995) Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res 670(1):75–81PubMedCrossRefGoogle Scholar
  17. Concha ML, Bianco IH, Wilson SW (2012) Encoding asymmetry within neural circuits. Nat Rev Neurosci 13(12):832–843.  https://doi.org/10.1038/nrn3371 PubMedCrossRefGoogle Scholar
  18. Corwin J, Reep R (1998) Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention. Psychobiology 26:87–102Google Scholar
  19. Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci USA 111(23):8661–8666.  https://doi.org/10.1073/pnas.1313222111 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375PubMedCrossRefGoogle Scholar
  21. Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220(2):168–190PubMedCrossRefGoogle Scholar
  22. Denenberg VH (1981) Hemispheric laterality in animals and the effects of early experience. Behav Brain Sci 4(1):1–21.  https://doi.org/10.1017/S0140525X00007330 CrossRefGoogle Scholar
  23. Denenberg VH, Garbanati J, Sherman DA, Yutzey DA, Kaplan R (1978) Infantile stimulation induces brain lateralization in rats. Science 201(4361):1150–1152PubMedCrossRefGoogle Scholar
  24. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci USA 105(15):5915–5920.  https://doi.org/10.1073/pnas.0801489105 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Duncan GH, Albanese MC (2003) Is there a role for the parietal lobes in the perception of pain? Adv Neurol 93:69–86PubMedGoogle Scholar
  26. Dyck M, Loughead J, Kellermann T, Boers F, Gur RC, Mathiak K (2011) Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage 54(3):2503–2513.  https://doi.org/10.1016/j.neuroimage.2010.10.013 PubMedCrossRefGoogle Scholar
  27. Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W (2010) Effort-Based Decision Making in the rat: an [18F] fluorodeoxyglucose micro positron emission tomography study. J Neurosci 30(29):9708–9714PubMedCrossRefGoogle Scholar
  28. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15(2):85–93.  https://doi.org/10.1016/j.tics.2010.11.004 PubMedCrossRefGoogle Scholar
  29. Fanselow MS, Gale GD (2003) The amygdala, fear, and memory. Ann N Y Acad Sci 985:125–134PubMedCrossRefGoogle Scholar
  30. Fujiwara J, Tobler PN, Taira M, Iijima T, Tsutsui K (2009) Segregated and integrated coding of reward and punishment in the cingulate cortex. J Neurophysiol 101(6):3284–3293.  https://doi.org/10.1152/jn.90909.2008 PubMedCrossRefGoogle Scholar
  31. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264.  https://doi.org/10.1126/science.1099901 PubMedCrossRefGoogle Scholar
  32. Gianaros PJ, Derbyshire SW, May JC, Siegle GJ, Gamalo MA, Jennings JR (2005) Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology 42(6):627–635.  https://doi.org/10.1111/j.1469-8986.2005.00366.x PubMedPubMedCentralCrossRefGoogle Scholar
  33. Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, Pepeu G (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106(1):43–53PubMedCrossRefGoogle Scholar
  34. Goldschmidt J, Wanger T, Engelhorn A, Friedrich H, Happel M, Ilango A, Engelmann M, Stuermer IW, Ohl FW, Scheich H (2010) High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: protocol and validation of the method. Neuroimage 49(1):303–315.  https://doi.org/10.1016/j.neuroimage.2009.08.012 PubMedCrossRefGoogle Scholar
  35. Gorges M, Roselli F, Müller HP, Ludolph AC, Rasche V, Kassubek J. Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI. Front Neurol 2017 May 10;8:200.  https://doi.org/10.3389/fneur.2017.00200. (eCollection 2017. Review. PubMed PMID: 28539914; PubMed Central PMCID: PMC5423907)
  36. Hellige JB (1990) Hemispheric asymmetry. Annu Rev Psychol 41:55–80.  https://doi.org/10.1146/annurev.ps.41.020190.000415 PubMedCrossRefGoogle Scholar
  37. Hellige JB (1993) Hemispheric Asymmetry: What’s Right and What’s Left. Harvard University Press, CambridgeGoogle Scholar
  38. Hess A, Axmann R, Rech J, Finzel S, Heindl C, Kreitz S, Sergeeva M, Saake M, Garcia M, Kollias G, Straub RH, Sporns O, Doerfler A, Brune K, Schett G (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci 108(9):3731–3736PubMedPubMedCentralCrossRefGoogle Scholar
  39. Holschneider DP, Yang J, Sadler TR, Nguyen PT, Givrad TK, Maarek JM (2006) Mapping cerebral blood flow changes during auditory-cued conditioned fear in the nontethered, nonrestrained rat. Neuroimage 29(4):1344–1358.  https://doi.org/10.1016/j.neuroimage.2005.08.038 PubMedCrossRefGoogle Scholar
  40. Honey RC, Watt A, Good M (1998) Hippocampal Lesions Disrupt an Associative Mismatch Process. J Neurosci 18(6):2226–2230PubMedCrossRefGoogle Scholar
  41. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78.  https://doi.org/10.1016/j.brainresrev.2007.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9(7):940–947.  https://doi.org/10.1038/nn1724 PubMedCrossRefGoogle Scholar
  43. Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30(2):188–202.  https://doi.org/10.1016/j.neubiorev.2005.06.005 PubMedCrossRefGoogle Scholar
  44. Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy J-M, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176):330–334PubMedCrossRefGoogle Scholar
  45. Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383(6597):256–259.  https://doi.org/10.1038/383256a0 PubMedCrossRefGoogle Scholar
  46. Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ (2004) Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 4(3):317–325PubMedCrossRefGoogle Scholar
  47. Kolb B, Sutherland RJ, Nonneman AJ, Whishaw IQ (1982) Asymmetry in the cerebral hemispheres of the rat, mouse, rabbit, and cat: the right hemisphere is larger. Exp Neurol 78(2):348–359PubMedCrossRefGoogle Scholar
  48. Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4(6):664–680PubMedCrossRefGoogle Scholar
  49. Kolodziej A, Lippert M, Angenstein F, Neubert J, Pethe A, Grosser OS, Amthauer H, Schroeder UH, Reymann KG, Scheich H, Ohl FW, Goldschmidt J (2014) SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice. Neuroimage 103:171–180.  https://doi.org/10.1016/j.neuroimage.2014.09.023 PubMedCrossRefGoogle Scholar
  50. Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92(5):917–927PubMedCrossRefGoogle Scholar
  51. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRefGoogle Scholar
  52. Ledoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  53. Leon MI, Poytress BS, Weinberger NM (2008) Avoidance learning facilitates temporal processing in the primary auditory cortex. Neurobiol Learn Mem 90(2):347–357.  https://doi.org/10.1016/j.nlm.2008.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leussis MP, Bolivar VJ (2006) Habituation in rodents: a review of behavior, neurobiology, and genetics. Neurosci Biobehav Rev 30(7):1045–1064.  https://doi.org/10.1016/j.neubiorev.2006.03.006 PubMedCrossRefGoogle Scholar
  55. Levita L, Hoskin R, Champi S (2012) Avoidance of harm and anxiety: a role for the nucleus accumbens. Neuroimage 62(1):189–198.  https://doi.org/10.1016/j.neuroimage.2012.04.059 PubMedCrossRefGoogle Scholar
  56. Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci 299:264–272PubMedCrossRefGoogle Scholar
  57. Luskin MB, Price JL (1983) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 216(3):264–291.  https://doi.org/10.1002/cne.902160305 PubMedCrossRefGoogle Scholar
  58. Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931.  https://doi.org/10.1146/annurev.neuro.24.1.897 PubMedCrossRefGoogle Scholar
  59. Maren S (2016) Parsing Reward and Aversion in the Amygdala. Neuron 90(2):209–211.  https://doi.org/10.1016/j.neuron.2016.04.011 PubMedCrossRefGoogle Scholar
  60. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428.  https://doi.org/10.1038/nrn3492 PubMedPubMedCentralCrossRefGoogle Scholar
  61. McDiarmid TA, Bernardos AC, Rankin CH (2017) Habituation is altered in neuropsychiatric disorders-a comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev.  https://doi.org/10.1016/j.neubiorev.2017.05.028 PubMedGoogle Scholar
  62. Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13(12):5418–5432PubMedGoogle Scholar
  63. Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang G-J, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123(12):5342–5350CrossRefGoogle Scholar
  64. Motta SC, Carobrez AP, Canteras NS (2017) The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 76(Pt A):39–47.  https://doi.org/10.1016/j.neubiorev.2016.10.012 PubMedCrossRefGoogle Scholar
  65. Nakamura K (1999) Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex. J Neurophysiol 82(5):2503–2517PubMedCrossRefGoogle Scholar
  66. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA et al (1987) Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28(2):191–202PubMedGoogle Scholar
  67. Ohl FW, Scheich H (2005) Learning-induced plasticity in animal and human auditory cortex. Curr Opin Neurobiol 15(4):470–477.  https://doi.org/10.1016/j.conb.2005.07.002 PubMedCrossRefGoogle Scholar
  68. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, CambridgeGoogle Scholar
  69. Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74(5):301–320.  https://doi.org/10.1016/j.pneurobio.2004.09.004 PubMedCrossRefGoogle Scholar
  70. Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4(4):437–441.  https://doi.org/10.1038/86110 PubMedCrossRefGoogle Scholar
  71. Pine DS, Grun J, Maguire EA, Burgess N, Zarahn E, Koda V, Fyer A, Szeszko PR, Bilder RM (2002) Neurodevelopmental aspects of spatial navigation: a virtual reality fMRI study. Neuroimage 15(2):396–406.  https://doi.org/10.1006/nimg.2001.0988 PubMedCrossRefGoogle Scholar
  72. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391PubMedCrossRefGoogle Scholar
  73. Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30(5):877–888.  https://doi.org/10.1111/j.1460-9568.2009.06881.x PubMedCrossRefGoogle Scholar
  74. Riedel A, Gruss M, Bock J, Braun K (2010) Impaired active avoidance learning in infant rats appears to be related to insufficient metabolic recruitment of the lateral septum. Neurobiol Learn Mem 93(2):275–282.  https://doi.org/10.1016/j.nlm.2009.11.001 pii]PubMedCrossRefGoogle Scholar
  75. Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303(1):121–131.  https://doi.org/10.1002/cne.903030111 PubMedCrossRefGoogle Scholar
  76. Rogan MT, Staubli UV, Ledoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607PubMedCrossRefGoogle Scholar
  77. Savonenko AV, Danilets AV, Zielinski K (1998) [The study of individual differences as a method for dividing into stages the acquisition of a complex reflex]. Zh Vyssh Nerv Deiat Im I P Pavlova 48(2):240–250PubMedGoogle Scholar
  78. Savonenko A, Werka T, Nikolaev E, Zielinski K, Kaczmarek L (2003) Complex effects of NMDA receptor antagonist APV in the basolateral amygdala on acquisition of two-way avoidance reaction and long-term fear memory. Learn Mem 10(4):293–303.  https://doi.org/10.1101/lm.58803 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Scheich H, Brosch M (2013) Task-related activation of auditory cortex. In: Neural correlates of auditory cognition. Springer, New York, pp 45–81CrossRefGoogle Scholar
  80. Scott JW, McBride RL, Schneider SP (1980) The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J Comp Neurol 194(3):519–534.  https://doi.org/10.1002/cne.901940304 PubMedCrossRefGoogle Scholar
  81. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, Bush G, Eskandar EN (2012) Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488(7410):218–221.  https://doi.org/10.1038/nature11239 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68(2):691–697PubMedCrossRefGoogle Scholar
  83. Stark H, Bischof A, Wagner T, Scheich H (2001) Activation of the dopaminergic system of medial prefrontal cortex of gerbils during formation of relevant associations for the avoidance strategy in the shuttle-box. Prog Neuropsychopharmacol Biol Psychiatry 25(2):409–426PubMedCrossRefGoogle Scholar
  84. Stark H, Rothe T, Wagner T, Scheich H (2004) Learning a new behavioral strategy in the shuttle-box increases prefrontal dopamine. Neuroscience 126(1):21–29PubMedCrossRefGoogle Scholar
  85. Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45(2):301–313.  https://doi.org/10.1016/j.neuron.2004.12.044 PubMedCrossRefGoogle Scholar
  86. Strange BA, Fletcher PC, Henson RN, Friston KJ, Dolan RJ (1999) Segregating the functions of human hippocampus. Proc Natl Acad Sci U S A 96(7):4034–4039PubMedPubMedCentralCrossRefGoogle Scholar
  87. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669.  https://doi.org/10.1038/nrn3785 PubMedCrossRefGoogle Scholar
  88. Sullivan RM, Gratton A (1999) Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19(7):2834–2840PubMedGoogle Scholar
  89. Sullivan RM, Gratton A (2002) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 927(1):69–79PubMedCrossRefGoogle Scholar
  90. Suzuki WA, Naya Y (2014) The perirhinal cortex. Annu Rev Neurosci 37:39–53.  https://doi.org/10.1146/annurev-neuro-071013-014207 PubMedCrossRefGoogle Scholar
  91. Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43(3):231–246PubMedCrossRefGoogle Scholar
  92. Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo M-K, Volkow ND (2013) Mapping brain metabolic connectivity in awake rats with μPET and optogenetic stimulation. J Neurosci 33(15):6343–6349 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Thiel CM, Huston JP, Schwarting RK (1998) Hippocampal acetylcholine and habituation learning. Neuroscience 85(4):1253–1262PubMedCrossRefGoogle Scholar
  94. Thiel CM, Muller CP, Huston JP, Schwarting RK (1999) High versus low reactivity to a novel environment: behavioural, pharmacological and neurochemical assessments. Neuroscience 93(1):243–251PubMedCrossRefGoogle Scholar
  95. Torrealba F, Valdes JL (2008) The parietal association cortex of the rat. Biol Res 41(4):369–377PubMedCrossRefGoogle Scholar
  96. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28(4):575–589.  https://doi.org/10.1017/S0140525X05000105 discussion 589–633.PubMedGoogle Scholar
  97. van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS (2001) Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14(6):1302–1308.  https://doi.org/10.1006/nimg.2001.0923 PubMedCrossRefGoogle Scholar
  98. VanElzakker M, Fevurly RD, Breindel T, Spencer RL (2008) Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 15(12):899–908.  https://doi.org/10.1101/lm.1196508 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vankov A, Herve-Minvielle A, Sara SJ (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7(6):1180–1187PubMedCrossRefGoogle Scholar
  100. Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F, Furman M, de Stein ML, Medina JH, Izquierdo I (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7(5):333–340PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vincenz D, Wernecke KEA, Fendt M, Goldschmidt J (2017) Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats. Behav Brain Res 332:164–171.  https://doi.org/10.1016/j.bbr.2017.05.053 PubMedCrossRefGoogle Scholar
  102. Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5(4):279–290.  https://doi.org/10.1038/nrn1366 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Weinberger NM, Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Prog Neurobiol 29(1):1–55PubMedCrossRefGoogle Scholar
  104. Wesson DW, Wilson DA (2011) Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 35(3):655–668.  https://doi.org/10.1016/j.neubiorev.2010.08.004 PubMedCrossRefGoogle Scholar
  105. Wetzel W, Ohl FW, Wagner T, Scheich H (1998) Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci Lett 252(2):115–118PubMedCrossRefGoogle Scholar
  106. Wirtshafter D (2005) Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment. Brain Res 1051(1–2):57–65.  https://doi.org/10.1016/j.brainres.2005.05.052 PubMedCrossRefGoogle Scholar
  107. Wyss JM, Van Groen T (1992) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2(1):1–11.  https://doi.org/10.1002/hipo.450020102 PubMedCrossRefGoogle Scholar
  108. Yoder RM, Clark BJ, Taube JS (2011) Origins of landmark encoding in the brain. Trends Neurosci 34(11):561–571.  https://doi.org/10.1016/j.tins.2011.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhu XO, McCabe BJ, Aggleton JP, Brown MW (1997) Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229(2):141–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Mannewitz
    • 1
  • J. Bock
    • 2
    • 6
  • S. Kreitz
    • 3
  • A. Hess
    • 3
  • J. Goldschmidt
    • 4
    • 5
    • 6
  • H. Scheich
    • 4
    • 6
  • Katharina Braun
    • 1
    • 6
  1. 1.Department of Zoology/Developmental Neurobiology, Institute of BiologyOtto von Guericke University MagdeburgMagdeburgGermany
  2. 2.“Epigenetics and Structural Plasticity”, Institute of BiologyOtto von Guericke University MagdeburgMagdeburgGermany
  3. 3.Institute of Experimental and Clinical Pharmacology and ToxicologyFriedrich-Alexander UniversityErlangenGermany
  4. 4.Department Acoustics, Learning and SpeechLeibniz Institute for NeurobiologyMagdeburgGermany
  5. 5.Department Systems PhysiologyLeibniz Institute for NeurobiologyMagdeburgGermany
  6. 6.Center for Behavioral Brain SciencesMagdeburgGermany

Personalised recommendations