Brain Structure and Function

, Volume 223, Issue 4, pp 1923–1936 | Cite as

GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem

  • Jeffrey G. Mellott
  • Nichole L. Beebe
  • Brett R. Schofield
Original Article

Abstract

The superior colliculus (SC) contains an auditory space map that is shaped by projections from several subcortical auditory nuclei. Both GABAergic (inhibitory) and excitatory cells contribute to these inputs, but there are contradictory reports regarding the sources of these inputs. We used retrograde tracing techniques in guinea pigs to identify cells in the auditory brainstem that project to the SC. We combined retrograde tracing with immunohistochemistry for glutamic acid decarboxylase (GAD) to identify putative GABAergic cells that participate in this pathway. Following a tracer injection in the SC, the nucleus of the brachium of the inferior colliculus (NBIC) contained the most labeled cells, followed by the inferior colliculus (IC). Smaller populations were observed in the sagulum, paralemniscal area, periolivary nuclei and ventrolateral tegmental nucleus. Overall, only 10% of the retrogradely labeled cells were GAD immunopositive. The presumptive inhibitory cells were observed in the NBIC, IC, superior paraolivary nucleus, sagulum and paralemniscal area. We conclude that the guinea pig SC receives input from a diverse set of auditory brainstem nuclei, some of which provide GABAergic input. These diverse origins of input to the SC likely represent a variety of functions. Inputs from the NBIC and IC likely provide spatial information for guiding orienting behaviors. Inputs from subcollicular nuclei are less likely to provide spatial information; rather, they may provide a shorter route for auditory information to reach the SC, and could generate avoidance or escape responses to an external threat.

Keywords

Inferior colliculus Nucleus of the brachium of the inferior colliculus Inhibition Orienting Avoidance behavior Attention Escape 

Abbreviations

AQ

Cerebral aqueduct

cMRF

Central mesencephalic reticular formation

D

Dorsal periolivary nucleus

DCN

Dorsal cochlear nucleus

DL

Dorsolateral periolivary nucleus

DLL

Dorsal nucleus of the lateral lemniscus

DpG/W

Deep gray/white layers of the superior colliculus

FG

FluoroGold

GAD

Glutamic acid decarboxylase

GAD+

GAD immunopositive

GAD

GAD immunonegative

GB

Green beads

grca

Granule cell area of cochlear nucleus

IC

Inferior colliculus

ICc

Central nucleus of the inferior colliculus

ICd

Dorsal cortex of the inferior colliculus

IClc

Lateral cortex of the inferior colliculus

ICrp

Rostral pole of the inferior colliculus

ICT

Intercollicular tegmentum

ILL

Intermediate nucleus of the lateral lemniscus

InG/W

Intermediate gray/white layers of the superior colliculus

LSO

Lateral superior olive

LTB

Lateral nucleus of the trapezoid body

MSO

Medial superior olivary nucleus

MTB

Medial nucleus of the trapezoid body

NBIC

Nucleus of the brachium of the inferior colliculus

op

Optic layer of the superior colliculus

PAG

Periaqueductal gray

PL

Paralemniscal area

PN

Pontine nuclei

RB

Red beads

Sag

Sagulum

SC

Superior colliculus

scp

Superior cerebellar peduncle

SOC

Superior olivary complex

SPN

Superior paraolivary nucleus

SuG

Superficial gray layer of the superior colliculus

VCN

Ventral cochlear nucleus

VLL

Ventral nucleus of the lateral lemniscus

VLTg

Ventrolateral tegmental nucleus

VTB

Ventral nucleus of the trapezoid body

Notes

Acknowledgements

Supported by National Institutes of Health Grant R01 DC004391. We gratefully acknowledge Colleen Sowick for technical assistance and Dr. Denise Inman for critical feedback on an earlier draft of the manuscript.

Author contributions

All authors contributed to data generation and analysis. JGM and BRS designed the experiments and wrote the paper.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adams JC, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons. Brain Res Bull 13:585–590CrossRefPubMedGoogle Scholar
  2. Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of the inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847CrossRefPubMedGoogle Scholar
  3. Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the inferior colliculus. J Comp Neurol 196:25–40CrossRefPubMedGoogle Scholar
  4. Anderson LA, Linden JF (2011) Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hear Res 274:48–60CrossRefPubMedPubMedCentralGoogle Scholar
  5. Appell PP, Behan M (1990) Sources of GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158CrossRefPubMedGoogle Scholar
  6. Bajo VM, Merchán MA, López DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334:241–262CrossRefPubMedGoogle Scholar
  7. Binns KE, Grant S, Withington DJ, Keating MJ (1992) A topographic representation of auditory space in the external nucleus of the inferior colliculus of the guinea-pig. Brain Res 589:231–242CrossRefPubMedGoogle Scholar
  8. Binns KE, Withington DJ, Keating MJ (1995) The developmental emergence of the representation of auditory azimuth in the external nucleus of the inferior colliculus of the guinea-pig: the effects of visual and auditory deprivation. Brain Res Dev Brain Res 85:14–24CrossRefPubMedGoogle Scholar
  9. Brandão ML, Troncoso AC, de Souza Silva MA, Huston JP (2003) The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. Eur J Pharmacol 463:225–233CrossRefPubMedGoogle Scholar
  10. Cadusseau J, Roger M (1985) Afferent projections to the superior colliculus in the rat, with special attention to the to deep layers. J Hirnforsch 26:667–681PubMedGoogle Scholar
  11. Casseday HJ, Diamond IT, Harting JK (1976) Auditory pathways to the cortex in Tupaia glis. J Comp Neurol 166:303–340CrossRefPubMedGoogle Scholar
  12. Chen B, May PJ (2000) The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp Brain Res 131:10–21CrossRefPubMedGoogle Scholar
  13. Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P (2012) Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front Neuroanat 6:9.  https://doi.org/10.3389/fnana.2012.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coote EJ, Rees A (2008) The distribution of nitric oxide synthase in the inferior colliculus of guinea pig. Neuroscience 154:218–225CrossRefPubMedGoogle Scholar
  15. Costa M, Piche M, Lepore F, Guillemot JP (2016) Age-related audiovisual interactions in the superior colliculus of the rat. Neuroscience 320:19–29.  https://doi.org/10.1016/j.neuroscience.2016.01.058 CrossRefPubMedGoogle Scholar
  16. Covey E, Hall WC, Kobler JB (1987) Subcortical connections of the superior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 263:179–197CrossRefPubMedGoogle Scholar
  17. Dean P, Redgrave P, Westby GW (1989) Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:137–147CrossRefPubMedGoogle Scholar
  18. Doubell TP, Baron J, Skaliora I, King AJ (2000) Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information. Eur J Neurosci 12:4290–4308PubMedGoogle Scholar
  19. Druga R, Syka J (1984) Projections from auditory structures to the superior colliculus in the rat. Neurosci Lett 45:247–252CrossRefPubMedGoogle Scholar
  20. Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–329CrossRefPubMedGoogle Scholar
  21. Foster NL, Noftz WA, Schofield BR (2015) Differences in GABAergic cell types distinguish the rostral pole of the inferior colliculus and the medial and lateral intercollicular areas. In: Program no. 507.11. Neuroscience meeting planner. Society for Neuroscience, ChicagoGoogle Scholar
  22. Grofová I, Otterson OP, Rinvik E (1978) Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res 146:205–220CrossRefPubMedGoogle Scholar
  23. Groh JM, Sparks DL (1992) Two models of transforming auditory signals from head-centered to eye-centered coordinates. Biol Cybern 67:291–302CrossRefPubMedGoogle Scholar
  24. Gruters KG, Groh JM (2012) Distribution of visual and saccade related information in the monkey inferior colliculus. Front Neural Circuits 6:96CrossRefPubMedPubMedCentralGoogle Scholar
  25. Harting JK, Van Lieshout DP (2000) Projections from the rostral pole of the inferior colliculus to the cat superior colliculus. Brain Res 881:244–247CrossRefGoogle Scholar
  26. Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501:269–286CrossRefPubMedGoogle Scholar
  27. Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259:21–30CrossRefPubMedGoogle Scholar
  28. Henkel CK, Edwards SB (1978) The superior colliculus control of pinna movements in the cat: possible anatomical connections. J Comp Neurol 182:763–767CrossRefPubMedGoogle Scholar
  29. Herbert H, Klepper A, Ostwald J (1997) Afferent and efferent connections of the ventrolateral tegmental area in the rat. Anat Embryol 196:235–259CrossRefPubMedGoogle Scholar
  30. Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289CrossRefGoogle Scholar
  31. Ingham NJ, Thornton SK, McCrossan D, Withington DJ (1998) Neurotransmitter involvement in the development and maintenance of the auditory space map in the guinea pig superior colliculus. J Neurophysiol 80:2941–2953CrossRefPubMedGoogle Scholar
  32. Jain R, Shore S (2006) External inferior colliculus integrates trigeminal and acoustic information: unit responses to trigeminal nucleus and acoustic stimulation in the guinea pig. Neurosci Lett 395:71–75CrossRefPubMedGoogle Scholar
  33. Jiang ZD, Moore DR, King AJ (1997) Source of subcortical projections to the superior colliculus in the ferret. Brain Res 755:279–292CrossRefPubMedGoogle Scholar
  34. Kandler K, Herbert H (1991) Auditory projections from the cochlear nucleus to pontine and mesencephalic reticular nuclei in the rat. Brain Res 562:230–242CrossRefPubMedGoogle Scholar
  35. King AJ, Jiang ZD, Moore DR (1998) Auditory brainstem projections to the ferret superior colliculus: anatomical contribution to the neural coding of sound azimuth. J Comp Neurol 390:342–365CrossRefPubMedGoogle Scholar
  36. Kudo M (1981) Projections of the nuclei of the lateral lemniscus in the cat: and autoradiographic study. Brain Res 221:57–69CrossRefPubMedGoogle Scholar
  37. Kudo M, Niimi K (1980) Ascending projection of the inferior colliculus in the cat: an autoradiographic study. J Comp Neurol 191:545–556CrossRefPubMedGoogle Scholar
  38. Kudo M, Tashiro T, Higo S, Matsuyama T, Kawamura S (1984) Ascending projections from the nucleus of the brachium of the inferior colliculus in the cat. Exp Brain Res 54:203–211CrossRefPubMedGoogle Scholar
  39. Kulesza RJ Jr, Berrebi AS (2000) Superior paraolivary nucleus of the rat is a GABAergic nucleus. J Assoc Res Otolaryngol 1:255–269CrossRefPubMedPubMedCentralGoogle Scholar
  40. Loftus WC, Malmierca MS, Bishop DC, Oliver DL (2008) The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154:196–205CrossRefPubMedPubMedCentralGoogle Scholar
  41. López DE, Saldaña E, Nodal FR, Merchán MA, Warr WB (1999) Projections of the cochlear root neurons, sentinels of the rat auditory pathway. J Comp Neurol 415:160–174CrossRefPubMedGoogle Scholar
  42. Martin RL, Webster WR, Servière J (1988) The frequency organization of the inferior colliculus of the guinea pig: a [14C]-2-deoxyglucose study. Hear Res 33:245–255CrossRefPubMedGoogle Scholar
  43. May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378CrossRefPubMedGoogle Scholar
  44. May PJ, Vidal PP, Baker R (1990) Synaptic organization of tectal-facial pathways in cat. II. Synaptic potentials following midbrain tegmentum stimulation. J Neurophysiol 64:381–402CrossRefPubMedGoogle Scholar
  45. Meininger V, Pol D, Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience 17:1159–1179CrossRefPubMedGoogle Scholar
  46. Mellott JG, Schofield BR (2015) Projections from the auditory midbrain to the superior colliculus and the thalamus have separate origins. In: Program no. 507.13 2015 Neuroscience meeting planner. Society for Neuroscience, Washington, DC (Online) Google Scholar
  47. Mellott JG, Bickford ME, Schofield BR (2014a) Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus. Front Syst Neurosci 8:188CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mellott JG, Foster NL, Nakamoto KT, Motts SD, Schofield BR (2014b) Distribution of GABAergic cells in the inferior colliculus that project to the thalamus. Front Neuroanat.  https://doi.org/10.3389/fnana.2014.00017 Google Scholar
  49. Mellott JG, Foster NL, Ohl AP, Schofield BR (2014c) Excitatory and inhibitory projections in parallel pathways from the inferior colliculus to the auditory thalamus. Front Neuroanat.  https://doi.org/10.1523/fnana.2014.00124 Google Scholar
  50. Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221:389–391CrossRefPubMedGoogle Scholar
  51. Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662CrossRefPubMedGoogle Scholar
  52. Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236CrossRefPubMedGoogle Scholar
  53. Mysore SP, Knudsen EL (2011) The role of a midbrain network in competitive stimulus selection. Curr Opin Neurobiol 21:653–660CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakamoto KT, Sowick CS, Schofield BR (2013) Auditory cortical axons contact commissural cells throughout the guinea pig inferior colliculus. Hear Res 306:131–144CrossRefPubMedGoogle Scholar
  55. Nodal FR, Doubell TP, Jiang ZD, Thompson ID, King AJ (2005) Development of the projection from the nucleus of the brachium of the inferior colliculus to the superior colliculus in the ferret. J Comp Neurol 485:202–217CrossRefPubMedGoogle Scholar
  56. Oliver DL (2005) Neuronal organization in the inferior colliculus. The inferior colliculus. Winer JA, Schreiner CE (eds) Springer, New York, pp 69–114CrossRefGoogle Scholar
  57. Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) Springer handbook of auditory research, vol 1. The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 168–221CrossRefGoogle Scholar
  58. Pereira AG, Moita MA (2016) Is there anybody out there? Neural circuits of threat detection in vertebrates. Curr Opin Neurobiol 41:179–187CrossRefPubMedGoogle Scholar
  59. Populin LC, Yin TC (2002) Bimodal interaction in the superior colliculus of the behaving cat. J Neurosci 22:2826–2834PubMedGoogle Scholar
  60. Savage MA, McQuade R, Thiele A (2017) Segregated fronto-cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors. J Comp Neurol 525:1980–1999CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schenberg LC, Povoa RM, Costa AL, Caldellas AV, Tufik S, Bittencourt AS (2005) Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 29:1279–1298CrossRefPubMedGoogle Scholar
  62. Schnupp JW, King AJ (1997) Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret. J Neurophysiol 78:2717–2731CrossRefPubMedGoogle Scholar
  63. Schofield BR (2008) Retrograde axonal tracing with fluorescent markers. Curr Protoc Neurosci 1.17.1–1.17.24Google Scholar
  64. Schofield BR, Cant NB (1991) Organization of the superior olivary complex in the guinea pig. I. Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology. J Comp Neurol 314:645–670CrossRefPubMedGoogle Scholar
  65. Schofield BR, Cant NB (1997) Ventral nucleus of the lateral lemniscus in guinea pigs: cytoarchitecture and inputs from the cochlear nucleus. J Comp Neurol 379:363–385CrossRefPubMedGoogle Scholar
  66. Schofield BR, Cant NB (1999) Descending auditory pathways: projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. J Comp Neurol 409:210–223CrossRefPubMedGoogle Scholar
  67. Schofield BR, Mellott JG, Motts SD (2014a) Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Front Neuroanat 8:16Google Scholar
  68. Schofield BR, Motts SD, Mellott JG, Foster NL (2014b) Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body. Front Neuroanat 8:10PubMedPubMedCentralGoogle Scholar
  69. Skaliora I, Doubell TP, Holmes NP, Nodal FR, King AJ (2004) Functional topography of converging visual and auditory inputs to neurons in the rat superior colliculus. J Neurophysiol 92:2933–2946CrossRefPubMedGoogle Scholar
  70. Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. Brain Behav Evol 31:49–56CrossRefPubMedGoogle Scholar
  71. Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, CambridgeGoogle Scholar
  72. Tanaka K, Otani K, Tokunaga A, Sugita S (1985) The organization of neurons in the nucleus of the lateral lemniscus projecting to the superior and inferior colliculi in the rat. 341:252–260Google Scholar
  73. Van Buskirk RL (1983) Subcortical auditory and somatosensory afferents to hamster superior colliculus. Brain Res Bull 10:583–587CrossRefPubMedGoogle Scholar
  74. Wallace MN, Fredens K (1989) Relationship of afferent inputs to the lattice of high NADPH-diaphorase activity in the mouse superior colliculus. Exp Brain Res 78:435–445CrossRefPubMedGoogle Scholar
  75. Wang N, Warren S, May PJ (2010) The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Exp Brain Res 201:701–717CrossRefPubMedGoogle Scholar
  76. Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to sensory physiology, vol 7. Academic Press, New York, pp 1–38Google Scholar
  77. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, Wu B, Zhou Z, Liu Y, Li J, Zhang Y, Zhou X, Xu L, Chen L, Bi G, Hu X, Xu F, Wang L (2015) Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 6:6756CrossRefPubMedPubMedCentralGoogle Scholar
  78. Xiong K, Luo DW, Patrylo PR, Luo XG, Struble RG, Clough RW, Yan XX (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol 211:271–282CrossRefPubMedPubMedCentralGoogle Scholar
  79. Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA, Tao HW, Zhang LI (2015) Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 6:7224CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang SQ, Sun X, Jen PH-S (1987) Anatomical study of neural projections to the superior colliculus of the big brown bat, Eptesicus fuscus. Brain Res 416:375–380CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownUSA

Personalised recommendations