Brain Structure and Function

, Volume 223, Issue 4, pp 1937–1952 | Cite as

Brain structural and functional asymmetry in human situs inversus totalis

  • Guy Vingerhoets
  • Xiang Li
  • Lewis Hou
  • Stephanie Bogaert
  • Helena Verhelst
  • Robin Gerrits
  • Roma Siugzdaite
  • Neil Roberts
Original Article


Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms.


Brain asymmetry Situs inversus Primary ciliary dyskinesia Language dominance Handedness 



This study was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen by FWO-grant n° G.0114.16N assigned to the first author. The authors would like to express their gratitude to the participants with situs inversus and control participants who took part in the study. We also want to thank the colleagues who contributed to the recruitment of SI and control participants, scoring of the behavioral data, or rating of the anatomical data: Eric Achten, Charlotte Boeykens, Charlotte Christiaens, Mattias De Coninck, Kirsty Gray, Peter Mariën, Emma Pauwels, and Sylke Vanrietvelde.

Compliance with ethical standards


This study was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen by FWO-Grant No. G.0114.16N assigned to the first author.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

429_2017_1598_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5614 KB)


  1. Afzelius BA, Stenram U (2006) Prevalence and genetics of immotile-cilia syndrome and left-handedness. Int J Dev Biol 50(6):571–573PubMedGoogle Scholar
  2. Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baldo JV, Schwartz S, Wilkins D, Dronkers NF (2006) Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J Int Neuropsychol Soc 12(6):896–900PubMedCrossRefGoogle Scholar
  4. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Resonan Med 44(4):625–632.<625::Aid-Mrm17>3.0.Co;2-O CrossRefGoogle Scholar
  5. Best CT (1988) The emergence of cerebral asymmetries in early human development: A literature review and a neuroembryological model. In: Molfese DL, Segalowitz SJ (eds) Brain lateralization in children: Developmental implications. Guilford Press, New York, pp 5–34Google Scholar
  6. Bisgrove BW, Essner JJ, Yost HJ (2000) Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127(16):3567–3579PubMedGoogle Scholar
  7. Bush A, Cole P, Hariri M, Mackay I, Phillips G, O’Callaghan C, Wilson R, Warner JO (1998) Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J 12(4):982–988. PubMedCrossRefGoogle Scholar
  8. Cai Q, Paulignan Y, Brysbaert M, Ibarrola D, Nazir TA (2010) The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb Cortex 20(5):1153–1163PubMedCrossRefGoogle Scholar
  9. Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex 44(8):953–961. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16PubMedCrossRefGoogle Scholar
  11. Catani M, Allin MPG, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104(43):17163–17168. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chiarello C, Vazquez D, Felton A, Leonard CM (2013) Structural asymmetry of anterior insula: Behavioral correlates and individual differences. Brain Lang 126(2):109–122PubMedPubMedCentralCrossRefGoogle Scholar
  13. Costafreda SG, Fu CHY, Lee L, Everitt B, Brammer MJ, David AS (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27(10):799–810PubMedCrossRefGoogle Scholar
  14. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666. PubMedCrossRefGoogle Scholar
  15. Cykowski MD, Colulon O, Kochunov PV, Amunts K, Lancaster JI, Laird AR, Glahn DC, Fox PT (2008) The central sulcus: an observer-independent characterization of sulcal landmarks and depth asymmetry. Cereb Cortex 18(9):1999–2009. PubMedCrossRefGoogle Scholar
  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis—I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194. PubMedCrossRefGoogle Scholar
  17. Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1):1–15PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fernandez G, de Greiff A, von Oertzen J, Reuber M, Lun S, Klaver P, Ruhlmann J, Reul JD, Elger CE (2001) Language mapping in less than 15 min: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594. PubMedCrossRefGoogle Scholar
  19. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22. PubMedCrossRefGoogle Scholar
  20. Galaburda AM, Lemay M, Kemper TL, Geschwind N (1978) Right-left asymmetries in brain. Science 199(4331):852–856. PubMedCrossRefGoogle Scholar
  21. Geschwind N, Galaburda AM (1987) Cerebral lateralization. MIT Press, CambridgeGoogle Scholar
  22. Geschwind N, Levitsky W (1968) Human brain—left-right asymmetries in temporal speech region. Science 161(3837):186-187PubMedCrossRefGoogle Scholar
  23. Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27(5):392–401PubMedCrossRefGoogle Scholar
  24. Goto K, Kurashima R, Gokan H, Inoue N, Ito I, Watanabe S (2010) Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in iv Mice. PloS One 5(11):e15468Google Scholar
  25. Grimes DT, Burdine RD (2017) Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet 33(9):616–628. PubMedCrossRefGoogle Scholar
  26. Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22(1):13–25. PubMedCrossRefGoogle Scholar
  27. Herve PY, Zago L, Petit L, Mazoyer B, Tzourio-Mazoyer N (2013) Revisiting human hemispheric specialization with neuroimaging. Trends Cogn Sci 17(2):69–80PubMedCrossRefGoogle Scholar
  28. Ihara A, Hirata M, Fujimaki N, Goto T, Umekawa Y, Fujita N, Terazono Y, Matani A, Wei Q, Yoshimine T, Yorifuji S, Murata T (2010) Neuroimaging study on brain asymmetries in situs inversus totalis. J Neurol Sci 288(1–2):72–78PubMedCrossRefGoogle Scholar
  29. Jansen A, Menke R, Sommer J, Forster AF, Bruchmann S, Hempleman J, Weber B, Knecht S (2006) The assessment of hemispheric lateralization in functional MRI - Robustness and reproducibility. Neuroimage 33(1):204–217PubMedCrossRefGoogle Scholar
  30. Kasprian G, Langs G, Brugger PC, Bittner M, Weber M, Arantes M, Prayer D (2011) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21(5):1076–1083. PubMedCrossRefGoogle Scholar
  31. Kennedy DN, O’Craven KM, Ticho BS, Goldstein AM, Makris N, Henson JW (1999) Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53(6):1260–1265PubMedCrossRefGoogle Scholar
  32. Kosaki K, Casey B (1998) Genetics of human left-right axis malformations. Semin Cell Dev Biol 9(1):89–99PubMedCrossRefGoogle Scholar
  33. Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30(11):3563–3573. PubMedCrossRefGoogle Scholar
  34. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349. PubMedCrossRefGoogle Scholar
  35. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, Knowles MR, Zariwala MA (2009) Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med 11(7):473–487. PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lemay M, Kido DK (1978) Asymmetries of cerebral hemispheres on computed tomograms. J Comput Assist Tomo 2(4):471–476CrossRefGoogle Scholar
  37. Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130(11):2303–2316. PubMedCrossRefGoogle Scholar
  38. Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E, Joliot M, Zago L, Mazoyer B, Tzourio-Mazoyer N (2015) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220(2):729–743PubMedCrossRefGoogle Scholar
  39. Mazoyer B, Zago L, Jobard G, Crivello F, Joliot M, Perchey G, Mellet E, Petit L, Tzourio-Mazoyer N (2014) Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PloS One 9 (6).
  40. McManus IC, Bryden MP (1991) Geschwind Theory of Cerebral Lateralization - Developing A Formal, Causal Model. Psychol Bull 110(2):237–253PubMedCrossRefGoogle Scholar
  41. Mcmanus IC, Martin N, Stubbings GF, Chung EMK, Mitchison HM (2004) Handedness and situs inversus in primary ciliary dyskinesia. Proc R Soc B Biol Sci 271(1557):2579–2582CrossRefGoogle Scholar
  42. Mellet E, Jobard G, Zago L, Crivello F, Petit L, Joliot M, Mazoyer B, Tzourio-Mazoyer N (2014) Relationships between hand laterality and verbal and spatial skills in 436 healthy adults balanced for handedness. Laterality 19(4):383–404. PubMedCrossRefGoogle Scholar
  43. Nelson HE, Willison JR (1991) The revised national adult reading test: test manual. NFER-Nelson, WindsorGoogle Scholar
  44. Oldfield RC (1971) The assessment and analysis of handedness. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  45. Previc FH (1991) A general-theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98(3):299–334PubMedCrossRefGoogle Scholar
  46. Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62(2):816–847PubMedPubMedCentralCrossRefGoogle Scholar
  47. Raven JC (1976) Standard progressive matrices sets A,B,C,D & E. Harcourt, San AntonioGoogle Scholar
  48. Rott HD (1979) Kartageners Syndrome and the Syndrome of Immotile Cilia. Hum Genet 46(3):249–261. PubMedCrossRefGoogle Scholar
  49. Schmand B, Lindeboom J, Van Harskamp F (1992) NLV: Nederlandse leestest voor volwassenen: Handleiding. Swets & Zeitlinger, LeidenGoogle Scholar
  50. Schmitz J, Lor S, Klose R, Gunturkun O, Ocklenburg S (2017) The functional genetics of handedness and language lateralization: insights from gene ontology, pathway and disease association analyses. Front Psychol. Google Scholar
  51. Schuler AL, Kasprian G, Schwartz E, Seidl R, Diogo MC, Mitter C, Langs G, Prayer D, Bartha-Doering L (2017) Mens inversus in corpore inverso? Language lateralization in a boy with situs inversus totalis. Brain Lang 174:9–15. PubMedCrossRefGoogle Scholar
  52. Tanaka S, Kanzaki R, Yoshibayashi M, Kamiya T, Sugishita M (1999) Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry. Neuropsychologia 37(7):869–874PubMedCrossRefGoogle Scholar
  53. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48PubMedCrossRefGoogle Scholar
  54. Torgersen J (1950) Situs inversus, asymmetry and twinning. Am J Hum Genet 2:361–370PubMedPubMedCentralGoogle Scholar
  55. Tubbs RS, Wellons JC, Salter G, Blount JP, Oakes WJ (2003) Intracranial anatomic asymmetry in situs inversus totalis. Anat Embryol 206(3):199–202PubMedCrossRefGoogle Scholar
  56. Vandenberg LN, Levin M (2013) A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 379(1):1–15PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wagner S, Sebastian A, Lieb K, Tuscher O, Tadic A (2014) A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects. BMC Neurosci. PubMedGoogle Scholar
  58. Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion Toolkit: A software package for diffusion imaging data processing and tractography. Proc Int Soc Magn Imaging Med 15:3720Google Scholar
  59. Wehrmaker A (1969) Right-Left Asymmetry and Situs Iversus in Triturus alpestris. Wilhem Roux’ Archiv für Entwicklungsmechanic der Organismen 163(1):1–32CrossRefGoogle Scholar
  60. Witelson SF, Kigar DL (1992) Sylvian fissure morphology and asymmetry in men and women—bilateral differences in relation to handedness in men. J Comp Neurol 323(3):326–340. doi: PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental PsychologyGhent UniversityGhentBelgium
  2. 2.Ghent Institute for functional and Metabolic Imaging (GIfMI)Ghent UniversityGhentBelgium
  3. 3.School of Clinical Sciences, Clinical Research Imaging Centre (CRIC)University of EdinburghEdinburghUK
  4. 4.Department of RadiologyGhent University HospitalGhentBelgium

Personalised recommendations