Skip to main content

Advertisement

Log in

Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Coordinated movement of the jaw is essential for catching and swallowing the prey. The majority of the jaw muscles in frogs are supplied by the trigeminal motoneurons. We have previously described that the primary vestibular afferent fibers, conveying information about the movements of the head, established close appositions on the motoneurons of trigeminal nerve providing one of the morphological substrates of monosynaptic sensory modulation of prey-catching behavior in the frog. The aim of our study was to reveal the spatial distribution of vestibular close appositions on the somatodendritic compartments of the functionally different trigeminal motoneurons. In common water frogs, the vestibular and trigeminal nerves were simultaneously labeled with different fluorescent dyes and the possible direct contacts between vestibular afferents and trigeminal motoneurons were identified with the help of DSD2 attached to an Andor Zyla camera. In the rhombencephalon, an overlapping area was detected between the incoming vestibular afferents and trigeminal motoneurons along the whole extent of the trigeminal motor nucleus. The vestibular axon collaterals formed large numbers of close appositions with dorsomedial and ventrolateral dendrites of trigeminal motoneurons. The majority of direct contacts were located on proximal dendritic segments closer than 300 µm to the somata. The identified contacts were evenly distributed on rostral motoneurons innervating jaw-closing muscles and motoneurons supplying jaw-opening muscles and located in the caudal part of trigeminal nucleus. We suggest that the identified contacts between vestibular axon terminals and trigeminal motoneurons may constitute one of the morphological substrates of a very quick response detected in trigeminal motoneurons during head movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson CW (2001) Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog Rana pipiens. Exp Brain Res 140:12–19

    Article  CAS  PubMed  Google Scholar 

  • Anderson CW, Nishikawa KC (1993) A prey-type dependent hypoglossal feedback system in the frog Rana pipiens. Brain Behav Evol 42:189–196

    Article  CAS  PubMed  Google Scholar 

  • Bácskai T, Matesz C (2002) Primary afferent fibers establish dye-coupled connections in the frog central nervous system. Brain Res Bull 57:317–319

    Article  PubMed  Google Scholar 

  • Bácskai T, Veress G, Halasi G, Deak A, Racz E, Szekely G, Matesz C (2008) Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, Rana esculenta. Brain Res Bull 75:419–423

    Article  PubMed  Google Scholar 

  • Bácskai T, Veress G, Halasi G, Matesz C (2010) Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Brain Res 1313:89–96

    Article  PubMed  Google Scholar 

  • Barbas-Henry HA, Lohman AH (1988) Primary projection and efferent cells of the VIIIth cranial nerve in the monitor lizard. Varanus exanthematicus J Comp Neurol 277:234–249

    Article  CAS  PubMed  Google Scholar 

  • Bass AH, Marchaterre MA, Baker R (1994) Vocal–acoustic pathways in a teleost fish. J Neurosci 14:4025–4039

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL (2000) Electrical synapses, a personal perspective (or history). Brain Res Rev32:16–18

    Article  CAS  PubMed  Google Scholar 

  • Birinyi A, Straka H, Matesz C, Dieringer N (2001) Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. Brain Res 921:44–59

    Article  CAS  PubMed  Google Scholar 

  • Birinyi A, Kecskes S, Kovalecz G, Matesz C (2016) Termination of vestibular afferent fibers on the trigeminal motoneurons: possible network mediating jaw movements during prey-catching behavior of the frog. In: Abstract Book of 8th European Conference on Comparative Neurobiology Munich Germany, P2–02

  • Buisseret-Delmas C, Compoint C, Delfini C, Buisseret P (1999) Organization of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol 409:153–168

    Article  CAS  PubMed  Google Scholar 

  • Corbacho F, Nishikawa KC, Weerasuriya A, Liaw JS, Arbib MA (2005) Schema-based learning of adaptable and flexible prey-cathing in anurans. I. The basic architecture. Biol Cybern Neurol 93:391–409

    Article  Google Scholar 

  • Corson AJ, Erisir A (2013) Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach. J Comp Neurol 521:2907–2926

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuccurazzu B, Deriu F, Tolu E, Yates BJ, Billing I (2007) A monosynaptic pathway links the vestibular nuclei and masseter muscle motoneurons in rats. Exp Brain Res 176:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deriu F, Eusebio T, Rothwell JC (2005) A sound-evoked vestibulomasseteric reflex in healthy humans. J Neurophysiol 93:2739–2751

    Article  PubMed  Google Scholar 

  • Diagne M, Valla J, Delfini C, Buisseret-Delmas C, Buisseret P (2006) Trigeminovestibular and trigeminospinal pathway in rats: retrograd tracing compared with glutamic acid decarboxylase and glutamate immunohistochemistry. J Comp Neurol 496:759–772

    Article  PubMed  Google Scholar 

  • Dicke U, Roth G (1993) Tectosipnal pathways in plethodontoid salamanders and their connections to motor nuclei involved in prey capture. In: Elsner N, Heisenberg M (eds) Gene brain behaviour. M. Georg Thieme, Stuttgart, pp 1–92

    Google Scholar 

  • Dieringer N (1995) Vestibular compensation: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129

    CAS  PubMed  Google Scholar 

  • Ewert JP (1984) Tectal mechanism that underlies prey-catching and avoidance behavior in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416

    Chapter  Google Scholar 

  • Ewert JP, Buxbaum-Conradi H, Glagow C, Röttgen A, Schürg-Pfeiffer E, Schwippert WW (1999) Forebrain and midbrain structures involved in prey-catching behaviour of toads: stimulus-response mediating circuits and their modulating loops. Eur J Morphol 37:172–176

    Article  CAS  PubMed  Google Scholar 

  • Ewert JP, Buxbaum-Conradi H, Dreisvogt M, Glagow C, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schwippert WW (2001) Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comp Bichem Physiol Part A 128:417–461

    Article  CAS  Google Scholar 

  • Gans C, Gorniak GC (1982) Functional morphology of lingual protrusion in marine toads (Bufo marinus). Am J Anat 163:195–222

    Article  CAS  PubMed  Google Scholar 

  • Gaupp E (1904) Ecker’s und R. Wiedersheim’s Anatomie des Frosches. vol 3. Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Giaconi E, Deriu F, Tolu E, Cuccurazzu B, Yates BJ, Billing I (2006) Transneuronal tracing of vestibulo-trigeminal pathways innervating the masseter muscle in the rat. Exp Brain Res 171:330–339

    Article  CAS  PubMed  Google Scholar 

  • Gray LA, O’Reilly JC, Nishikawa KC (1997) Evolution of forelimb movement patterns for prey manipulation in anurans. J Exp Zool 277:417–424

    Article  CAS  PubMed  Google Scholar 

  • Grinnell AD (1966) A study of the interaction between motoneurons in the frog spinal cord. J Physiol 182:612–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiss E, Natchev N, Gumpenberger M, Weissenbacher A, Van Wassenbergh S (2013) Biomechanics and hydrodynamics of prey capture in the chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. J R Soc Interface. https://doi.org/10.1098/rsif.2012.1028

    Google Scholar 

  • Hickenbottom RS, Bishop B, Moriarty TM (1985) Effects of whole-body rotation on masseteric motoneuron excitability. Exp Neurol 89:442–453

    Article  CAS  PubMed  Google Scholar 

  • Hillman DE (1969) Light and electron microscopical study of the relationships between the cerbellum and the vestibular organ of the frog. Exp Brain Res 9:1–15

    CAS  PubMed  Google Scholar 

  • Hiscock J, Straznicky C (1982) Peripheral and central terminations of axons of the mesencephalic trigeminal neurons in Xenopus. Neurosci Lett 32:235–240

    Article  CAS  PubMed  Google Scholar 

  • Horowitz SS, Simmons AM (2010) Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). Brain. Behav Evol 76:226–247

    Article  Google Scholar 

  • Kecskes S, Matesz C, Gaál B, Birinyi A (2016) Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue. Brain Struct Funct 221:1533–1553

    Article  PubMed  Google Scholar 

  • Kottick A, Mufaddal I, Baghdadwala I, Ferguson EV, Wilson RJA (2013) Transmission of the respiratory rhytm to trigeminal and hypoglossal motor neurons in the American Bullfrog (Lhitobates catesbiana). Resp Physiol Neurobiol 188:180–191

    Article  Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kusunoki T (1990) Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica. J Comp Neurol 295:277–289

    Article  CAS  PubMed  Google Scholar 

  • Kuruvilla A, Sitko S, Schwartz IR, Honrubia V (1985) Central projections of primary vestibular fibers in the bullfrog: I. The vestibular nuclei. Laryngoscope 5:692–707

    Google Scholar 

  • Lazar G, Toth P, Csank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neurol 215:108–120

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstemin the rat. J Comp Neurol 356:563–579

    Article  CAS  PubMed  Google Scholar 

  • Mandal R, Anderson CW (2010) Identification of muscle spindles in the submentalis muscle of the marine toad, Bufo marinus and its potential proprioceptive capacity in jaw-tongue coordination. Anat Rec (Hoboken) 293:1568–1573

    Article  Google Scholar 

  • Matesz C (1979) Central projection of the VIIIth cranial nerve in the frog. Neurosci 4:2061–2071

    Article  CAS  Google Scholar 

  • Matesz C (1988) Fine structure of the primary afferent vestibulocochlear terminals in the frog. Acta Biol Hung 39:267–277

    CAS  PubMed  Google Scholar 

  • Matesz C (1994) Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta). Eur J Morphol 32:117–121

    CAS  PubMed  Google Scholar 

  • Matesz C, Székely G (1978) The motor column and sensory projections of the branchial cranial nerves in the frog. J Comp Neurol 178:157–1769

    Article  CAS  PubMed  Google Scholar 

  • Matesz C, Birinyi A, Hevessy Z (1994) Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog. J Hirnforsch 35:67–70

    CAS  PubMed  Google Scholar 

  • Matesz C, Birinyi A, Kothalawala DS, Székely G (1995) Investigation of the dendritic geometry of brainstem motoneurons with different functions using multivariant multistatistical techniques in the frog. Neurosci 65:1129–1144

    Article  CAS  Google Scholar 

  • Matesz C, Kulik A, Bácskai T (2002) Ascending and descending projections of the lateral vestibular nucleus in the frog, Rana esculenta. J Comp Neurol 444:115–128

    Article  PubMed  Google Scholar 

  • Matesz C, Kovalecz G, Veress G, Deák Á, Rácz É, Bácskai T (2008) Vestibulotrigeminal pathways in the frog, Rana esculenta. Brain Res Bull 75:371–374

    Article  PubMed  Google Scholar 

  • Montgomery NM (1988) Projections of the vestibular and cerebellar nuclei in Rana pipiens. Brain Behav Evol 31:82–95

    Article  CAS  PubMed  Google Scholar 

  • Munoz AM, Gonzalez A, ten Donkelaar HJ (1995) Anuran dorsal column nucleus: organization, immunohistochemical characterization and fiber connections in Rana perezi and Xenopus laevis. J Comp Neurol 363:197–220

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa KC, Gans C (1992) The role of hypoglossal sensory feedback during feeding in the marine toad, Bufo marinus. J Exp Biol 264:2511–2529

    Google Scholar 

  • Olsson K, Westberg KG (1991) Integration in trigeminal premotor interneurones in the cat. 2. Functional characteristics of neurones in the subnucleus of the oral nucleus of the spinal trigeminal tract with a projection to the digastric motoneurone subnucleus. Exp Brain Res 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Opdam R, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165:307–332

    Article  CAS  PubMed  Google Scholar 

  • Pratt KG, Aizenman CD (2009) Multisensory integration in mesencephalic trigeminal neurons in Xenopus tadpoles. J Neurophysiol 102:399–412

    Article  PubMed  PubMed Central  Google Scholar 

  • Precht W, Llinas R (1969) Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp Brain Res 9:30–52

    Article  CAS  PubMed  Google Scholar 

  • Precht W, Richter A, Ozawa S, Shimazu H (1974) Intracellular study of frog’s vestibular neurons in relation to the labyrinth and spinal cord. Expl Brain Res 19:377–393

    Article  CAS  Google Scholar 

  • Rácz E, Bácskai T, Halasi G, Kovács E, Matesz C (2006) Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog Rana esculenta. J Comp Neurol 496:382–394

    Article  PubMed  Google Scholar 

  • Satoh Y, Ishizuka K, Murakami T (2009a) Modulation of the jaw-opening reflex by stimulation of vestibular nuclear complex in rats. Neurosci Lett 457:21–26

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Ishizuka K, Murakami T (2009b) Modulation of the masseteric monosynaptic reflex by stimulation of vestibular nuclear complex in rats. Neurosci Lett 466:16–20

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Ishizuka K, Murakami T (2010) Modulation of cortically induced rhythmic jaw movements in rats by stimulation of the vestibular nuclear complex. Neurosci Res 68:307–14

    Article  PubMed  Google Scholar 

  • Sotello C (1976) Morphology of cerebellar cortex. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin, pp 865–891

    Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and size of arbitrary particles using the dissector. J Misrosc 134:127–136

    Article  CAS  Google Scholar 

  • Székely G, Matesz C (1987) Trigeminal motoneurons with disparate dendritic geometry innervate different muscle proup in the frog. Neurosci Lett 77:161–165

    Article  PubMed  Google Scholar 

  • Székely G, Matesz C (1993) The efferent system of cranial nerve nuclei: a comparative neuromorphological study. Adv Anat Embryol Cell Biol 128:1–92

    Article  PubMed  Google Scholar 

  • Tolu E, Caria MA, Simula ME, Lacana P (1994) Muscle spindle and periodontal trigeminal afferents modulate the hypoglossal motoneuronal activity. Arch Ital Biol 132:93–104

    CAS  PubMed  Google Scholar 

  • Tolu E, Caria MA, Chessa G, Melis F, Simula ME, Podda MV, Solinas A, Deriu F (1996) Trigeminal motoneuron responses to vestibular stimulation in Guinea pig. Arch Ital Biol 134:140–51

    Google Scholar 

  • Valdez CM, Nishikawa KC (1997) Sensory modulation and behavioral choice during feeding in the Australian frog, Cyclorana novaehollandiae. J Comp Physiol A 180:187–202

    Article  CAS  PubMed  Google Scholar 

  • Valla J, Delfini C, Diagne M, Pinganaud G, Buisseret P, Buisseret-Delmas C (2003) Vestibulotrigeminal and vestibulospinal projection in rats: retrograde tracing coupled to glutamic acid decarboxylase immunoreactivity. Neurosci Lett 340:225–228

    Article  CAS  PubMed  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neurosci Lett 125:187–190

    Article  CAS  PubMed  Google Scholar 

  • Walkowiak W (2007) Call production and neural basis of vocalization. In: Narins PM, Feng AS, Richard RF, Popper AN (eds) Hearing and sound communication in Amphibians. Springer, Berlin, pp 87–112

    Google Scholar 

  • Westberg KG, Sandström G, Olsson K (1995) Integration in trigeminal premotor interneurones in the cat. 3. Input characteristics and synaptic actions of neurones in subnucleus of the oral nucleus of the spinal trigeminal tract with a projection to the masseteric motoneuron subnucleus. Exp Brain Res 104:449–461

    Article  CAS  PubMed  Google Scholar 

  • Wouterlood FG, van Haeften T, Blijleven N, Perez-Templado P, Perez-Templado H (2002) Double-label confocal laser-scanning microscopy, image restoration, and real-time three-dimensional reconstruction to study axons in the central nervous system and their contacts with target neurons. Appl Immunohistochem Mol Morphol 10:85–95

    PubMed  Google Scholar 

  • Wouterlood FG, Bockers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of post-synaptic density proteins and target neuron-markers. J Neurosci Methods 128:129–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Timea Horvath for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Birinyi.

Ethics declarations

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare no conflict of interest.

Grant sponsor

This research was supported by financial aid from the Hungarian Academy of Sciences (MTA-TKI 11,008) and from the Hungarian National Research Found (OTKA K115471).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birinyi, A., Rácz, N., Kecskes, S. et al. Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw. Brain Struct Funct 223, 1683–1696 (2018). https://doi.org/10.1007/s00429-017-1581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1581-1

Keywords

Navigation