Skip to main content

Advertisement

Log in

Individual variability in the structural properties of neurons in the human inferior olive

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The inferior olive (IO) is the sole source of the climbing fibers innervating the cerebellar cortex. We have previously shown both individual differences in the size and folding pattern of the principal nucleus (IOpr) in humans as well as in the expression of different proteins in IOpr neurons. This high degree of variability was not present in chimpanzee samples. The neurochemical differences might reflect static differences among individuals, but might also reflect age-related processes resulting in alterations of protein synthesis. Several observations support the latter idea. First, accumulation of lipofuscin, the “age pigment” is well documented in IOpr neurons. Second, there are silver- and abnormal tau-immunostained intraneuronal granules in IOpr neurons (Ikeda et al. Neurosci Lett 258:113–116, 1998). Finally, Olszewski and Baxter (Cytoarchitecture of the human brain stem, Second edn. Karger, Basel, 1954) observed an apparent loss of IOpr neurons in older individuals. We have further investigated the possibility of age-related changes in IOpr neurons using silver- and immunostained sections. We found silver-labeled intraneuronal granules in neurons of the IOpr in all human cases studied (n = 17, ages 25–71). We did not, however, confirm immunostaining with antibodies to abnormal tau. There was individual variability in the density of neurons as well as in the expression of the calcium-binding protein calretinin. In the chimpanzee, there were neither silver-stained intraneuronal granules nor irregularities in immunostaining. Overall, the data support the hypothesis that in some, but not all, humans there are functional changes in IOpr neurons and ultimately cell death. Neurochemical changes of IOpr neurons may contribute to age-related changes in motor and cognitive skills mediated by the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan CY (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169:566–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baizer JS (2014) Unique features of the human brainstem and cerebellum. Front Hum Neurosci 8:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518:872–895

    Article  CAS  PubMed  Google Scholar 

  • Baizer JS, Baker JF, Haas K, Lima R (2007) Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 1176:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baizer JS, Paolone NA, Witelson SF (2011a) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 1382:45–56

    Article  CAS  PubMed  Google Scholar 

  • Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011b) Neurochemical and structural organization of the principal nucleus of the inferior olive in the human. Anat Rec 294:1198–1216

    Article  CAS  Google Scholar 

  • Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011c) Neurochemical and structural organization of the principal nucleus of the inferior olive in the human. Anat Rec (Hoboken) 294:1198–1216

    Article  CAS  Google Scholar 

  • Baizer JS, Paolone NA, Sherwood CC, Hof PR (2013a) Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes). Brain Struct Funct 218:1463–1485

    Article  CAS  PubMed  Google Scholar 

  • Baizer JS, Weinstock N, Witelson SF, Sherwood CC, Hof PR (2013b) The nucleus pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct 218:389–403

    Article  PubMed  Google Scholar 

  • Baizer JS, Wong KM, Hof PR, Witelson SF, Sherwood CC (2013c) Degeneration of neurons in the principal nucleus of the inferior olive of the human: evidence from silver staining. Neuroscience Meeting Planner San Diego, CA Society for Neuroscience, 2013 Online Program No. 469.16

  • Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR (2014) Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec (Hoboken) 297:1865–1884

    Article  CAS  Google Scholar 

  • Baizer JS, Wong KM, Manohar S, Hayes SH, Ding D, Dingman R, Salvi RJ (2015) Effects of acoustic trauma on the auditory system of the rat: the role of microglia. Neuroscience 303:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson F, Hesslow G (2006) Cerebellar control of the inferior olive. Cerebellum 5:7–14

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Brody H (1976) An examination of cerebral cortex and brainstem aging. In: Terry R (ed) Neurobiology of aging. Raven, New York, pp 177–181

    Google Scholar 

  • Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  PubMed  Google Scholar 

  • Buée L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  • Castellani R, Alexiev B, Phillips D, Perry G, Smith M (2007) Microscopic investigations in neurodegenerative diseases. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Spain, pp 171–182

    Google Scholar 

  • Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87:3861–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput S, Proteau L (1996) Aging and motor control. J Gerontol B 51:P346–P355

    Article  CAS  Google Scholar 

  • Connolly AA, Anderton BA, Esiri MM (1987) A comparative study of a silver stain and monoclonal antibody reactions on Alzheimer’s neurofibrillary tangles. J Neurol Neurosurg Psychiatry 50:1221–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craik FI (1990) Changes in memory with normal aging: a functional view. Adv Neurol 51:201–205

    CAS  PubMed  Google Scholar 

  • Craik FI (2008) Memory changes in normal and pathological aging. Can J Psychiatry 53:343–345

    Article  PubMed  Google Scholar 

  • Danckert SL, Craik FI (2013) Does aging affect recall more than recognition memory? Psychol Aging 28:902–909

    Article  PubMed  Google Scholar 

  • de Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  • Desclin JC (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res 77:365–384

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, McAllister JP, 2nd, Yao B, Yan N, Canady AI (2001) Neuron tolerance during hydrocephalus. Neuroscience 106:659–667

    Article  CAS  PubMed  Google Scholar 

  • Drach LM, Bohl J, Goebel HH (1994) The lipofuscin content of nerve cells of the inferior olivary nucleus in Alzheimer’s disease. Dementia 5:234–239

    CAS  PubMed  Google Scholar 

  • Drach LM, Bohl J, Wach S, Schlote W, Goebel HH (1998) Reduced intraneuronal lipofuscin content in dementia with Lewy bodies compared with Alzheimer’s disease and controls. Dement Geriatr Cogn Disord 9:1–5

    Article  CAS  PubMed  Google Scholar 

  • Du F, Eid T, Schwarcz R (1998) Neuronal damage after the injection of aminooxyacetic acid into the rat entorhinal cortex: a silver impregnation study. Neuroscience 82:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Li C, Strick PL (2002) Motor and nonmotor domains in the monkey dentate. Ann NY Acad Sci 978:289–301

    Article  PubMed  Google Scholar 

  • Dunbar RL, Chen G, Gao W, Reinert KC, Feddersen R, Ebner TJ (2004) Imaging parallel fiber and climbing fiber responses and their short-term interactions in the mouse cerebellar cortex in vivo. Neuroscience 126:213–227

    Article  CAS  PubMed  Google Scholar 

  • Ebner TJ, Hewitt AL, Popa LS (2011) What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum 10:683–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar A, Sampedro ED, Dow RS (1968) Quantitative data on the inferior olivary nucleus in man, cat and vampire bat. J Comp Neurol 132:397–403

    Article  CAS  PubMed  Google Scholar 

  • Falk T, Zhang S, Erbe EL, Sherman SJ (2006) Neurochemical and electrophysiological characteristics of rat striatal neurons in primary culture. J Comp Neurol 494:275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch CE, Austad SN (2012) Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. Age (Dordr) 34:1075–1091

    Article  CAS  Google Scholar 

  • Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8

    CAS  PubMed  Google Scholar 

  • Gilbert PF, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128:309–328

    Article  CAS  PubMed  Google Scholar 

  • Gilissen EP, Leroy K, Yilmaz Z, Kovari E, Bouras C, Boom A, Poncelet L, Erwin JM, Sherwood CC, Hof PR, Brion JP (2014) A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct Funct

  • Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 189:167–169

    Article  CAS  PubMed  Google Scholar 

  • Grandi D, Arcari ML (1992) Neuronal aspects and plasticity of inferior olivary complex and nucleus dentatus. Acta Biomed Ateneo Parmense 63:17–25

    CAS  PubMed  Google Scholar 

  • Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowl Environ 2005(5): re1

    Article  Google Scholar 

  • Horn KM, Deep A, Gibson AR (2013) Progressive limb ataxia following inferior olive lesions. J Physiol 591:5475–5489

    Article  CAS  PubMed  Google Scholar 

  • Horoupian DS, Chu PL (1994) Unusual case of corticobasal degeneration with tau/Gallyas-positive neuronal and glial tangles. Acta Neuropathol 88:592–598

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S, Tsuchiya K (1998) Alz-50/Gallyas-positive lysosome-like intraneuronal granules in Alzheimer’s disease and control brains. Neurosci Lett 258:113–116

    Article  CAS  PubMed  Google Scholar 

  • Issidorides M, Shanklin WM (1961) Histochemical reactions of cellular inclusions in the human neurone. J Anat 95:151–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jicha GA, Petersen RC, Knopman DS, Boeve BF, Smith GE, Geda YE, Johnson KA, Cha R, Delucia MW, Braak H, Dickson DW, Parisi JE (2006) Argyrophilic grain disease in demented subjects presenting initially with amnestic mild cognitive impairment. J Neuropathol Exp Neurol 65:602–609

    Article  PubMed  Google Scholar 

  • Kato Y, Maruyama W, Naoi M, Hashizume Y, Osawa T (1998) Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett 439:231–234

    Article  CAS  PubMed  Google Scholar 

  • Katz ML, Robison WG Jr (2002) What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 34:169–184

    Article  CAS  PubMed  Google Scholar 

  • Krampe RT (2002) Aging, expertise and fine motor movement. Neurosci Biobehav Rev 26:769–776

    Article  PubMed  Google Scholar 

  • LaBossiere E, Glickstein M (1976) Histological processing for the neural sciences. Charles C. Thomas, Springfield

    Google Scholar 

  • Lasn H, Winblad B, Bogdanovic N (2001) The number of neurons in the inferior olivary nucleus in Alzheimer’s disease and normal aging: a stereological study using the optical fractionator. J Alzheimers Dis 3:159–168

    Article  PubMed  Google Scholar 

  • Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, Phillips E, Lipsitz LA, Collins JJ (2003) Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18:101–108

    Article  PubMed  Google Scholar 

  • Lee JY, Choi JS, Ahn CH, Kim IS, Ha JH, Jeon CJ (2006) Calcium-binding protein calretinin immunoreactivity in the dog superior colliculus. Acta Histochem Cytochem 39:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Davis RL (2014) Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. J Comp Neurol 522:2299–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas RR (2011) Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol 589:3423–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: its role in motor learning. Science 190:1230–1231

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Lin AH, Masliah E, Wyss-Coray T (2006) Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Proc Natl Acad Sci USA 103:18326–18331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann DM, Yates PO (1974) Lipoprotein pigments–their relationship to ageing in the human nervous system. I. The lipofuscin content of nerve cells. Brain 97:481–488

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO, Stamp JE (1978) The relationship between lipofuscin pigment and ageing in the human nervous system. J Neurol Sci 37:83–93

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNay EC, Willingham DB (1998) Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learn Mem 4:411–420

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1997) Dentate output channels: motor and cognitive components. Prog Brain Res 114:553–566

    Article  CAS  PubMed  Google Scholar 

  • Monagle RD, Brody H (1974) The effects of age upon the main nucleus of the inferior olive in the human. J Comp Neurol 155:61–66

    Article  CAS  PubMed  Google Scholar 

  • Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ (2001a) Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 8:207–219

    Article  CAS  PubMed  Google Scholar 

  • Northington FJ, Ferriero DM, Martin LJ (2001b) Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 23:186–191

    Article  CAS  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. 2nd edn. Karger, Basel

    Google Scholar 

  • Oltmans GA, Lorden JF, Beales M (1985) Lesions of the inferior olive increase glutamic acid decarboxylase activity in the deep cerebellar nuclei of the rat. Brain Res 347:154–158

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano O, Santarcangelo E, Stampacchia G, Srivastava UC (1981) Changes in posture and reflex movements due to kainic acid lesions of the inferior olive. Arch Ital Biol 119:279–313

    CAS  PubMed  Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Seidler RD (2007) Aging affects motor learning but not savings at transfer of learning. Learn Mem 14:17–21

    Article  PubMed  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    Article  CAS  PubMed  Google Scholar 

  • Sjőbeck M, Dahlén S, Englund E (1999) Neuronal loss in the brainstem and cerebellum–part of the normal aging process? A morphometric study of the vermis cerebelli and inferior olivary nucleus. J Gerontol A 54:B363–B368

    Article  Google Scholar 

  • Smith CD, Walton A, Loveland AD, Umberger GH, Kryscio RJ, Gash DM (2005) Memories that last in old age: motor skill learning and memory preservation. Neurobiol Aging 26:883–890

    Article  CAS  PubMed  Google Scholar 

  • Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW, Soreq H (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 97:8647–8652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone LS, Lisberger SG (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol 63:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    Article  CAS  PubMed  Google Scholar 

  • Timmann D, Daum I (2007) Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum 6:159–162

    Article  PubMed  Google Scholar 

  • Tokuda IT, Hoang H, Schweighofer N, Kawato M (2013) Adaptive coupling of inferior olive neurons in cerebellar learning. Neural Netw 47:42–50

    Article  PubMed  Google Scholar 

  • Tong W, Igarashi T, Ferriero DM, Noble LJ (2002) Traumatic brain injury in the immature mouse brain: characterization of regional vulnerability. Exp Neurol 176:105–116

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288:753–775

    Article  Google Scholar 

  • Whiteford R, Getty R (1966) Distribution of lipofuscin in the canine and porcine brain as related to aging. J Gerontol 21:31–44

    Article  CAS  PubMed  Google Scholar 

  • Wilcock GK, Matthews SM, Moss T (1990) Comparison of three silver stains for demonstrating neurofibrillary tangles and neuritic plaques in brain tissue stored for long periods. Acta Neuropathol 79:566–568

    Article  CAS  PubMed  Google Scholar 

  • Witelson SF, McCulloch PB (1991) Premortem and postmortem measurement to study structure with function: a human brain collection. Schizophr Bull 17:583–591

    Article  CAS  PubMed  Google Scholar 

  • Wolansky T, Pagliardini S, Greer JJ, Dickson CT (2007) Immunohistochemical characterization of substance P receptor (NK(1)R)-expressing interneurons in the entorhinal cortex. J Comp Neurol 502:427–441

    Article  CAS  PubMed  Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1986) Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp Brain Res 63:81–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Matthew Stone, Yaechan Choi and Jessica Kichigin for help with immunohistochemistry and the plotting of IOpr sections. Supported in part by the Department of Physiology and Biophysics, University at Buffalo. We thank the National Chimpanzee Brain Resource, NS092988, for the chimpanzee brainstems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Baizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baizer, J.S., Wong, K.M., Sherwood, C.C. et al. Individual variability in the structural properties of neurons in the human inferior olive. Brain Struct Funct 223, 1667–1681 (2018). https://doi.org/10.1007/s00429-017-1580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1580-2

Keywords

Navigation