Brain Structure and Function

, Volume 223, Issue 4, pp 1637–1666 | Cite as

Receptor-driven, multimodal mapping of the human amygdala

  • Olga Kedo
  • Karl Zilles
  • Nicola Palomero-Gallagher
  • Axel Schleicher
  • Hartmut Mohlberg
  • Sebastian Bludau
  • Katrin Amunts
Original Article


The human amygdala consists of subdivisions contributing to various functions. However, principles of structural organization at the cellular and molecular level are not well understood. Thus, we re-analyzed the cytoarchitecture of the amygdala and generated cytoarchitectonic probabilistic maps of ten subdivisions in stereotaxic space based on novel workflows and mapping tools. This parcellation was then used as a basis for analyzing the receptor expression for 15 receptor types. Receptor fingerprints, i.e., the characteristic balance between densities of all receptor types, were generated in each subdivision to comprehensively visualize differences and similarities in receptor architecture between the subdivisions. Fingerprints of the central and medial nuclei and the anterior amygdaloid area were highly similar. Fingerprints of the lateral, basolateral and basomedial nuclei were also similar to each other, while those of the remaining nuclei were distinct in shape. Similarities were further investigated by a hierarchical cluster analysis: a two-cluster solution subdivided the phylogenetically older part (central, medial nuclei, anterior amygdaloid area) from the remaining parts of the amygdala. A more fine-grained three-cluster solution replicated our previous parcellation including a laterobasal, superficial and centromedial group. Furthermore, it helped to better characterize the paralaminar nucleus with a molecular organization in-between the laterobasal and the superficial group. The multimodal cyto- and receptor-architectonic analysis of the human amygdala provides new insights into its microstructural organization, intersubject variability, localization in stereotaxic space and principles of receptor-based neurochemical differences.


Amygdala Cytoarchitecture Probabilistic mapping Receptor architecture Human brain 



We would like to thank Markus Cremer, Sabine Wilms, Stephanie Krause, Angelika Börner, Jessica Teske-Bausch and René Hübbers for their excellent technical assistance.

Compliance with ethical standards


This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 (Human Brain Project SGA1).


  1. Adolphs R (2010) What does the amygdala contribute to social cognition? Ann N Y Acad Sci 1191:42–61. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley, Oxford, pp 1–66Google Scholar
  4. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352. CrossRefGoogle Scholar
  5. Amunts K, Schleicher A, Zilles K (2007) Cytoarchitecture of the cerebral cortex—more than localization. Neuroimage 37:1061–1065. CrossRefPubMedGoogle Scholar
  6. Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9).
  7. Bach DR, Behrens TE, Garrido L, Weiskopf N, Dolan RJ (2011) Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J Neurosci 31:618–623. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One 2(3):e307. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benzing WC, Mufson EJ, Jennes L, Stopa EG, Armstrong DM (1992) Distribution of neurotensin immunoreactivity within the human amygdaloid complex: a comparison with acetylcholinesterase- and Nissl-stained tissue sections. J Comp Neurol 317:283–297. CrossRefPubMedGoogle Scholar
  10. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242. CrossRefPubMedGoogle Scholar
  11. Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K (2014) Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 93 Pt 2:260–275. CrossRefPubMedGoogle Scholar
  12. Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230:427–439. CrossRefPubMedGoogle Scholar
  13. Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol 49:1–136Google Scholar
  14. Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2013) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp 34(12):3247–3266. CrossRefPubMedGoogle Scholar
  15. Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, Tettamanti M, Cappa SF (2013) The functional and structural neural basis of individual differences in loss aversion. J Neurosci 33:14307–14317. CrossRefPubMedGoogle Scholar
  16. Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628. CrossRefPubMedGoogle Scholar
  17. Castellano C, Brioni JD, Nagahara AH, McGaugh JL (1989) Post-training systemic and intra-amygdala administration of the GABA-B agonist baclofen impairs retention. Behav Neural Biol 52:170–179CrossRefPubMedGoogle Scholar
  18. Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 20:65–107CrossRefPubMedGoogle Scholar
  19. de Olmos JS (1990) Amygdala. In: Paxinos G (ed) The human nervous system. Academic Press Inc, San Diego, pp 583–710CrossRefGoogle Scholar
  20. de Olmos JS (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2 edn. Elsevier, San Diego, pp 739–868CrossRefGoogle Scholar
  21. deCampo DM, Fudge JL (2012) Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 36:520–535. CrossRefPubMedGoogle Scholar
  22. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. CrossRefPubMedGoogle Scholar
  23. Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (2007) Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex. Neuroimage 34:1317–1330. CrossRefPubMedGoogle Scholar
  24. Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18:2637–2645CrossRefPubMedPubMedCentralGoogle Scholar
  25. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922. CrossRefPubMedGoogle Scholar
  26. Ferry B, Roozendaal B, McGaugh JL (1999) Involvement of alpha1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur J Pharmacol 372:9–16CrossRefPubMedGoogle Scholar
  27. Fruhholz S, Grandjean D (2013) Amygdala subregions differentially respond and rapidly adapt to threatening voices. Cortex 49:1394–1403. CrossRefPubMedGoogle Scholar
  28. Fuchs E, Flugge G (2003) Chronic social stress: effects on limbic brain structures. Physiol Behav 79:417–427CrossRefPubMedGoogle Scholar
  29. Fudge JL, Tucker T (2009) Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 159:819–841. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209CrossRefPubMedGoogle Scholar
  31. García-López M, Abellan A, Legaz I, Rubenstein JL, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 506:46–74. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goossens L, Kukolja J, Onur OA, Fink GR, Maier W, Griez E, Schruers K, Hurlemann R (2009) Selective processing of social stimuli in the superficial amygdala. Hum Brain Mapp 30:3332–3338. CrossRefPubMedGoogle Scholar
  33. Guarraci FA, Frohardt RJ, Kapp BS (1999) Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 827:28–40CrossRefPubMedGoogle Scholar
  34. Heimer L, de Olmos JS, Alheid GF, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer RC (1999) The Basal Forebrain. Part II. In: Bloom FE, Björklund A, Hökfelt T (eds) Primate nervous system. Part III. Elsevier, Amsterdam, pp 57–226CrossRefGoogle Scholar
  35. Hesse E, Mikulan E, Decety J, Sigman M, Garcia MC, Silva W, Ciraolo C, Vaucheret E, Baglivo F, Huepe D, Lopez V, Manes F, Bekinschtein TA, Ibanez A (2016) Early detection of intentional harm in the human amygdala. Brain 139:54–61. CrossRefPubMedGoogle Scholar
  36. Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3:65–73CrossRefPubMedGoogle Scholar
  37. Hömke L (2006) A multigrid method for anisotropic PDEs in elastic image registration. Numer Linear Algebra Appl 13:215–229CrossRefGoogle Scholar
  38. Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172:13–20CrossRefPubMedGoogle Scholar
  39. Hurlemann R, Schlaepfer TE, Matusch A, Reich H, Shah NJ, Zilles K, Maier W, Bauer A (2009) Reduced 5-HT(2A) receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci 4:79–84. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481CrossRefGoogle Scholar
  41. Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515. CrossRefPubMedGoogle Scholar
  42. Keifer OP Jr, Hurt RC, Ressler KJ, Marvar PJ (2015) The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology (Bethesda) 30:389–401Google Scholar
  43. Klumpers F, Morgan B, Terburg D, Stein DJ, van Honk J (2015) Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Soc Cogn Affect Neurosci 10:1161–1168. CrossRefPubMedGoogle Scholar
  44. Koelsch S, Skouras S (2014) Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: an fMRI study with music. Hum Brain Mapp 35:3485–3498CrossRefPubMedGoogle Scholar
  45. Koelsch S, Skouras S, Fritz T, Herrera P, Bonhage C, Kussner MB, Jacobs AM (2013) The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. Neuroimage 81:49–60. CrossRefPubMedGoogle Scholar
  46. Kukolja J, Schlapfer TE, Keysers C, Klingmuller D, Maier W, Fink GR, Hurlemann R (2008) Modeling a negative response bias in the human amygdala by noradrenergic-glucocorticoid interactions. J Neurosci 28:12868–12876. CrossRefPubMedGoogle Scholar
  47. LaLumiere RT (2014) Optogenetic dissection of amygdala functioning. Front Behav Neurosci 8(107):1–7. Google Scholar
  48. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. CrossRefPubMedGoogle Scholar
  49. Martínez-García F, Novejarque A, Lanuza E (2008) Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 75:206–213. CrossRefPubMedGoogle Scholar
  50. McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21CrossRefPubMedGoogle Scholar
  51. McGaugh JL (2002) Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25:456CrossRefPubMedGoogle Scholar
  52. Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9:235–241CrossRefPubMedGoogle Scholar
  53. Mishra A, Rogers BP, Chen LM, Gore JC (2014) Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum Brain Mapp 35:1247–1260. CrossRefPubMedGoogle Scholar
  54. Mohlberg H, Eickhoff S, Schleicher A, Zilles K, Amunts K (2012) A new processing pipeline and release of cytoarchitectonic probabilistic maps—JuBrain. OHBM 2012, Peking, China (Poster)Google Scholar
  55. Niehoff DL, Whitehouse PJ (1983) Multiple benzodiazepine receptors: autoradiographic localization in normal human amygdala. Brain Res 276:237–245CrossRefPubMedGoogle Scholar
  56. Nieuvenhuys R, Voogd J, van Huijzen C (2008) Telencephalon: amygdala and claustrum. In: The human central nervous system, 4th edn. Springer, pp 401–426Google Scholar
  57. Olsson A, Phelps EA (2007) Social learning of fear. Nat Neurosci 10:1095–1102. CrossRefPubMedGoogle Scholar
  58. Onur OA, Walter H, Schlaepfer TE, Rehme AK, Schmidt C, Keysers C, Maier W, Hurlemann R (2009) Noradrenergic enhancement of amygdala responses to fear. Soc Cogn Affect Neurosci 4:119–126. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355CrossRefPubMedGoogle Scholar
  60. Pape HC, Stork O (2003) Genes and mechanisms in the amygdala involved in the formation of fear memory. Ann N Y Acad Sci 985:92–105CrossRefPubMedGoogle Scholar
  61. Pare D (2003) Role of the basolateral amygdala in memory consolidation. Prog Neurobiol 70:409–420CrossRefPubMedGoogle Scholar
  62. Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain-III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122CrossRefPubMedGoogle Scholar
  63. Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain-IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139CrossRefPubMedGoogle Scholar
  64. Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213. CrossRefPubMedGoogle Scholar
  65. Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala gamma-aminobutyric acidergic system in health and disease. J Neurosci Res 94(6):548–567. CrossRefPubMedGoogle Scholar
  66. Price JL, Russchen FT, Amaral DG (1987) The Limbic region. II: the amygdaloid complex. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5. Integrated systems of the CNS, Part I. Elsevier, Oxford, pp 279–388Google Scholar
  67. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95:14476–14481CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rezayof A, Habibi P, Zarrindast MR (2011) Involvement of dopaminergic and glutamatergic systems of the basolateral amygdala in amnesia induced by the stimulation of dorsal hippocampal cannabinoid receptors. Neuroscience 175:118–126. CrossRefPubMedGoogle Scholar
  69. Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain: a review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Cerebral cortex. Further aspects of cortical function, including hippocampus. Plenum Press, New York, pp 345–450Google Scholar
  70. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefGoogle Scholar
  71. Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D (2014) The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 35(2):527–538. CrossRefPubMedGoogle Scholar
  72. Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472CrossRefPubMedGoogle Scholar
  73. Sorvari H, Soininen H, Paljarvi L, Karkola K, Pitkanen A (1995) Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 360:185–212. CrossRefPubMedGoogle Scholar
  74. Sorvari H, Soininen H, Pitkanen A (1996a) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443CrossRefPubMedGoogle Scholar
  75. Sorvari H, Soininen H, Pitkanen (1996b) Calretinin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 369:188–208CrossRefPubMedGoogle Scholar
  76. Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128:18–23. CrossRefPubMedGoogle Scholar
  77. Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323. CrossRefPubMedGoogle Scholar
  78. Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen. Springer, BerlinGoogle Scholar
  79. Svendsen CN, Bird ED (1985) Acetylcholinesterase staining of the human amygdala. Neurosci Lett 54:313–318CrossRefPubMedGoogle Scholar
  80. Takahashi H, Yamada M, Suhara T (2012) Functional significance of central D1 receptors in cognition: beyond working memory. J Cereb Blood Flow Metab 32:1248–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Talarovicova A, Krskova L, Kiss A (2007) Some assessments of the amygdala role in suprahypothalamic neuroendocrine regulation: a minireview. Endocr Regul 41:155–162PubMedGoogle Scholar
  82. Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405:397–406CrossRefPubMedGoogle Scholar
  83. Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379–392CrossRefPubMedGoogle Scholar
  84. Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 759–834CrossRefGoogle Scholar
  85. Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K (2008) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42:1127–1141. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339CrossRefPubMedGoogle Scholar
  87. Zilles K, Amunts K (2010) Centenary of Brodmann’s map-conception and fate. Nat Rev Neurosci 11:139–145. CrossRefPubMedGoogle Scholar
  88. Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002a) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599CrossRefPubMedGoogle Scholar
  89. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002b) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta JC, Toga AW (eds) Brain mapping: the methods, 2nd edn. Elsevier, Amsterdam, pp 573–602CrossRefGoogle Scholar
  90. Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Olga Kedo
    • 1
  • Karl Zilles
    • 1
    • 2
    • 3
  • Nicola Palomero-Gallagher
    • 1
  • Axel Schleicher
    • 1
  • Hartmut Mohlberg
    • 1
  • Sebastian Bludau
    • 1
  • Katrin Amunts
    • 1
    • 3
    • 4
  1. 1.Institute of Neuroscience and Medicine, INM-1Research Centre JülichJülichGermany
  2. 2.Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
  3. 3.JARA-BRAINJülich-Aachen Research AllianceAachenGermany
  4. 4.C. & O. Vogt Institute for Brain ResearchUniversity Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations