Advertisement

Brain Structure and Function

, Volume 223, Issue 4, pp 1731–1745 | Cite as

Repeated shock stress facilitates basolateral amygdala synaptic plasticity through decreased cAMP-specific phosphodiesterase type IV (PDE4) expression

  • Steve Ryan
  • Chenchen Li
  • Aurélie Menigoz
  • Rimi Hazra
  • Joanna Dabrowska
  • David Ehrlich
  • Katelyn Gordon
  • Donald G. Rainnie
Original Article

Abstract

Previous studies have shown that exposure to stressful events can enhance fear memory and anxiety-like behavior as well as increase synaptic plasticity in the rat basolateral amygdala (BLA). We have evidence that repeated unpredictable shock stress (USS) elicits a long-lasting increase in anxiety-like behavior in rats, but the cellular mechanisms mediating this response remain unclear. Evidence from recent morphological studies suggests that alterations in the dendritic arbor or spine density of BLA principal neurons may underlie stress-induced anxiety behavior. Recently, we have shown that the induction of long-term potentiation (LTP) in BLA principal neurons is dependent on activation of postsynaptic D1 dopamine receptors and the subsequent activation of the cyclic adenosine 5′-monophosphate (cAMP)—protein kinase A (PKA) signaling cascade. Here, we have used in vitro whole-cell patch-clamp recording from BLA principal neurons to investigate the long-term consequences of USS on their morphological properties and synaptic plasticity. We provided evidence that the enhanced anxiety-like behavior in response to USS was not associated with any significant change in the morphological properties of BLA principal neurons, but was associated with a changed frequency dependence of synaptic plasticity, lowered LTP induction threshold, and reduced expression of phosphodiesterase type 4 enzymes (PDE4s). Furthermore, pharmacological inhibition of PDE4 activity with rolipram mimics the effects of chronic stress on LTP induction threshold and baseline startle. Our results provide the first evidence that stress both enhances anxiety-like behavior and facilitates synaptic plasticity in the amygdala through a common mechanism of PDE4-mediated disinhibition of cAMP-PKA signaling.

Keywords

Macromolecular complexes Compartmentalization a-Kinase anchoring protein Basolateral amygdala Chronic stress Morphology 

Notes

Compliance with ethical standards

Funding

This work was supported by funding from the National Institute of Mental Health, Grant MH069852 to DGR.

References

  1. Abercrombie HC, Schaefer SM, Larson CL, Oakes TR, Lindgren KA et al (1998) Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 9:3301–3307CrossRefPubMedGoogle Scholar
  2. Baillie GS, Houslay MD (2005) Arrestin times for compartmentalised cAMP signalling and phosphodiesterase-4 enzymes. Curr Opin Cel Biol 17(2):129–134CrossRefGoogle Scholar
  3. Beylin AV, Shors TJ (1998) Stress enhances excitatory trace eyeblink conditioning and opposes acquisition of inhibitory conditioning. Behav Neurosci 112:1327–1338CrossRefPubMedGoogle Scholar
  4. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242CrossRefPubMedGoogle Scholar
  5. Blitzer RD, Wong T, Nouranifar R, Iyengar R, Landau EM (1995) Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403–1414CrossRefPubMedGoogle Scholar
  6. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S et al (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940–1942CrossRefPubMedGoogle Scholar
  7. Braga MF, Aroniadou-Anderjaska V, Li H (2004) The physiological role of kainate receptors in the amygdala. Mol Neurobiol 30:127–141CrossRefPubMedGoogle Scholar
  8. Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15(11):1714–1722CrossRefPubMedGoogle Scholar
  9. Bureau Y, Handa M, Zhu Y, Laliberte F, Moore CS, Liu S, Huang Z, MacDonald D, Xu DG, Robertson GS (2006) Neuroanatomical and pharmacological assessment of Fos expression induced in the rat brain by the phosphodiesterase-4 inhibitor 6-(4-pyridylmethyl)-8-(3-nitrophenyl) quinoline. Neuropharmacology 51(5):974–985CrossRefPubMedGoogle Scholar
  10. Caudal D, Godsil BP, Mailliet F, Bergerot D, Jay TM (2010) Acute stress induces contrasting changes in AMPA receptor subunit phosphorylation within the prefrontal cortex, amygdala and hippocampus. PLoS One 5:e15282CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen CC, Yang CH, Huang CC, Hsu KS (2010) Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology 35(7):1605–1617CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conrad CD, LeDoux JE, Magariños AM, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113(5):902–913CrossRefPubMedGoogle Scholar
  13. Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60(2):236–248CrossRefPubMedGoogle Scholar
  14. Cordero MI, Venero C, Kruyt ND, Sandi C (2003) Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats. Evidence for a role of corticosterone. Horm Behav 44:338–345CrossRefPubMedGoogle Scholar
  15. Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152(3):703–712CrossRefPubMedGoogle Scholar
  16. Drevets WC (1999) Prefrontal cortical-amygdalar metabolism in major depression. Ann N Y Acad Sci 877:614–637CrossRefPubMedGoogle Scholar
  17. Ehrlich DE, Rainnie DG (2015) Prenatal stress alters the development of socioemotional behavior and amygdala neuron excitability in rats. Neuropsychopharmacology 40(9):2135–2145CrossRefGoogle Scholar
  18. Ehrlich DE, Ryan SJ, Rainnie DG (2012) Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala. J Physiol 590(19):4819–4838CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hazra R, Guo JD, Dabrowska J, Rainnie DG (2012) Differential distribution of serotonin receptor subtypes in BNST(ALG) neurons: modulation by unpredictable shock stress. Neuroscience 225:9–21CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huang T, McDonough CB, Abel T (2006) Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. Eur J Cell Biol 85(7):635–642CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hubert GW, Li C, Rainnie DG, Muly EC (2014) Effects of stress on AMPA receptor distribution and function in the basolateral amygdala. Brain Struct Funct 219(4):1169–1179CrossRefPubMedGoogle Scholar
  22. Itoh T, Abe K, Tokumura M, Horiuchi M, Inoue O, Ibii N (2003) Different regulation of adenylyl cyclase and rolipram-sensitive phosphodiesterase activity on the frontal cortex and hippocampus in learned helplessness rats. Brain Res 991(1–2):142–149CrossRefPubMedGoogle Scholar
  23. Josselyn SA (2010) Continuing the search for the engram: examining the mechanism of fear memories. J Psychiatry Neurosci 35(4):221–228CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kavushansky A, Richter-Levin G (2006) Effects of stress and corticosterone on activity and plasticity in the amygdala. J Neurosci Res 84(7):1580–1587CrossRefPubMedGoogle Scholar
  25. Klussmann E (2016) Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value. Cell Signal 28(7):713–718CrossRefPubMedGoogle Scholar
  26. LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79CrossRefPubMedGoogle Scholar
  27. Li X, Baillie GS, Houslay MD (2009) Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 284(24):16170–16182CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li C, Dabrowska J, Hazra R, Rainnie DG (2011) Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS One 6:e26065CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu RJ, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci USA 105(1):359–364CrossRefPubMedPubMedCentralGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  31. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23CrossRefPubMedGoogle Scholar
  32. McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12(2):205–210CrossRefPubMedGoogle Scholar
  33. McGirr A, Lipina TV, Mun HS, Georgiou J, Al-Miri AH, Ng E, Zhai D, Elliot C, Cameron RT, Mullings JG, Liu F, Baillie GS, Clapcote SJ, Roder JD (2016) Specific inhibition of phosphodiesterase-4B results in anxiolysis and facilitates memory acquisition. Neuropsychopharmacology 41(4):1080–1092CrossRefPubMedGoogle Scholar
  34. Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433–439CrossRefPubMedGoogle Scholar
  35. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102:9371–9376CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moberg CA, Curtin JJ (2009) Alcohol selectively reduces anxiety but not fear: startle response during unpredictable versus predictable threat. J Abnorm Psychol 118(2):335–347CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moench KM, Maroun M, Kavushansky A, Wellman C (2015) Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress. Neurobiol Stress 3:23–33CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT (2004) Putting fear in its place: remapping of hippocampal place cells during fear conditioning. J Neurosci 2004 Aug 4 24(31):7015–7023Google Scholar
  39. Nie T, McDonough CB, Huang T, Nguyen PV, Abel T (2007) Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27(38):10278–10288CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nijholt IM, Ostroveanu A, de Bruyn M, Luiten PG, Eisel UL, Van der Zee EA (2007) Both exposure to a novel context and associative learning induce an upregulation of AKAP150 protein in mouse hippocampus. Neurobiol Learn Mem 87(4):693–696CrossRefPubMedGoogle Scholar
  41. Otmakhova NA, Otmakhov N, Mortenson LH, Lisman JE (2000) Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci 20:4446–4451PubMedGoogle Scholar
  42. Padival M, Quinette D, Rosenkranz JA (2013) Effects of repeated stress on excitatory drive of basal amygdala neurons in vivo. Neuropsychopharmacology 38(9):1748–1762CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pickel VM, Colago EE, Mania I, Molosh AI, Rainnie DG (2006) Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience 142:671–690CrossRefPubMedGoogle Scholar
  44. Pillai AG, Anilkumar S, Chattarji S (2012) The same antidepressant elicits contrasting patterns of synaptic changes in the amygdala vs hippocampus. Neuropsychopharmacology 37(12):2702–2711CrossRefPubMedPubMedCentralGoogle Scholar
  45. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 2004;125(1):1–6CrossRefPubMedGoogle Scholar
  46. Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82(1):69–85CrossRefPubMedGoogle Scholar
  47. Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1993) Intracellular recordings from morphologically identified neurons of the basolateral amygdala. J Neurophysiol 69:1350–1362CrossRefPubMedGoogle Scholar
  48. Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29(8):1207–1223CrossRefPubMedGoogle Scholar
  49. Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML et al (2000) Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 47:769–776CrossRefPubMedGoogle Scholar
  50. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP et al (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25:3109–3114CrossRefPubMedGoogle Scholar
  51. Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25:8725–8734CrossRefPubMedGoogle Scholar
  52. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607CrossRefPubMedGoogle Scholar
  53. Rosenkranz JA, Venheim ER, Padival M (2010) Chronic stress causes amygdala hyperexcitability in rodents. Biol Psychiatry 67:1128–1136CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rutten K, Misner DL, Works M, Blokland A, Novak TJ et al (2008) Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. Eur J Neurosci 28:625–632CrossRefPubMedGoogle Scholar
  55. Rutten K, Wallace TL, Works M, Prickaerts J, Blokland A, Novak TJ, Santarelli L, Misner DL (2011) Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B(-/-)) mice. Neuropharmacology 61:138–147CrossRefPubMedGoogle Scholar
  56. Ryan SJ, Ehrlich DE, Rainnie DG (2014) Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala. Brain Struct Funct 221(2):839–854Google Scholar
  57. Shors TJ, Foy MR, Levine S, Thompson RF (1990) Unpredictable and uncontrollable stress impairs neuronal plasticity in the rat hippocampus. Brain Res Bull 24(5):663–667CrossRefPubMedGoogle Scholar
  58. Shors TJ, Weiss C, Thompson RF (1992) Stress-induced facilitation of classical conditioning. Science 257:537–539CrossRefPubMedGoogle Scholar
  59. Sink KS, Walker DL, Yang Y, Davis M (2011) Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. J Neurosci 31:1802–1810CrossRefPubMedPubMedCentralGoogle Scholar
  60. Suvrathan A, Bennur S, Ghosh S, Tomar A, Anilkumar S, Chattarji S (2014) Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos Trans R Soc Lond B Biol Sci 369(1633)Google Scholar
  61. Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G, Lynch MJ, Elvassore N, Prinz A, Herberg FW, Houslay MD, Zaccolo M (2006) PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175(3):441–451CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tsai SF, Huang TY, Chang CY, Hsu YC, Chen SJ, Yu L, Kuo YM, Jen CJ (2014) Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats. Front Behav Neurosci 8:27PubMedPubMedCentralGoogle Scholar
  63. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034Google Scholar
  64. Villarreal G, King CY (2001) Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 6:131–145CrossRefPubMedGoogle Scholar
  65. Vouimba RM, Yaniv D, Diamond D, Richter-Levin G (2004) Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. Eur J Neurosci 19:1887–1894CrossRefPubMedGoogle Scholar
  66. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818PubMedGoogle Scholar
  67. Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128(4):667–673CrossRefGoogle Scholar
  68. Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143:387–393CrossRefPubMedGoogle Scholar
  69. Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17:9375–9383CrossRefPubMedGoogle Scholar
  70. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216CrossRefPubMedGoogle Scholar
  71. Watanabe Y, Gould E, McEwen BS (1992a) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345CrossRefPubMedGoogle Scholar
  72. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992b) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222:157–162CrossRefPubMedGoogle Scholar
  73. Werenicz A, Christoff RR, Blank M, Jobim PF, Pedroso TR, Reolon GK, Schröder N, Roesler R (2012) Administration of the phosphodiesterase type 4 inhibitor rolipram into the amygdala at a specific time interval after learning increases recognition memory persistence. Learn Mem 19(10):495–498CrossRefPubMedGoogle Scholar
  74. Wood GE, Norris EH, Waters E, Stoldt JT, McEwen BS (2008) Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav Neurosci 122(2):282–292CrossRefPubMedGoogle Scholar
  75. Zhang HT, Huang Y, Masood A, Stolinski LR, Li Y, Zhang L, Dlaboga D, Jin SL, Conti M, O’Donnell JM (2008) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 33(7):1611–1623CrossRefPubMedGoogle Scholar
  76. Zhu D, Li C, Swanson AM, Villalba RM, Guo J, Zhang Z, Matheny S, Murakami T, Stephenson JR, Daniel S, Fukata M, Hall RA, Olson JJ, Neigh GN, Smith Y, Rainnie DG, Van Meir EG (2015) BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest. 125(4):1497–4508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Behavioral Neuroscience and Psychiatric DisordersYerkes National Primate Research CenterAtlantaUSA
  2. 2.Department of PsychiatryEmory University School of MedicineAtlantaUSA
  3. 3.Department of Medicine, Center for Translational and International Hematology, Vascular Medicine InstituteUniversity of PittsburghPittsburghUSA
  4. 4.Department of Cellular and Molecular Pharmacology, Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  5. 5.Department of Neuroscience, Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  6. 6.Department of Neuroscience and Physiology, Neuroscience InstituteNYU Langone Medical CenterNew YorkUSA
  7. 7.Department of OtolaryngologyNYU Langone School of MedicineNew YorkUSA

Personalised recommendations