Brain Structure and Function

, Volume 223, Issue 3, pp 1459–1471 | Cite as

Supramodal effect of rightward prismatic adaptation on spatial representations within the ventral attentional system

  • Isabel Tissieres
  • Eleonora Fornari
  • Stephanie Clarke
  • Sonia Crottaz-Herbette
Original Article


Rightward prismatic adaptation (R-PA) was shown to alleviate not only visuo-spatial but also auditory symptoms in neglect. The neural mechanisms underlying the effect of R-PA have been previously investigated in visual tasks, demonstrating a shift of hemispheric dominance for visuo-spatial attention from the right to the left hemisphere both in normal subjects and in patients. We have investigated whether the same neural mechanisms underlie the supramodal effect of R-PA on auditory attention. Normal subjects underwent a brief session of R-PA, which was preceded and followed by an fMRI evaluation during which subjects detected targets within the left, central and right space in the auditory or visual modality. R-PA-related changes in activation patterns were found bilaterally in the inferior parietal lobule. In either modality, the representation of the left, central and right space increased in the left IPL, whereas the representation of the right space decreased in the right IPL. Thus, a brief exposure to R-PA modulated the representation of the auditory and visual space within the ventral attentional system. This shift in hemispheric dominance for auditory spatial attention offers a parsimonious explanation for the previously reported effects of R-PA on auditory symptoms in neglect.


Supramodal Prismatic adaptation Functional MRI Ventral attentional system Inferior parietal lobule 



Angular gyrus


Percent signal changes


Functional magnetic resonance imaging


Inferior parietal lobule


Rightward prismatic adaptation


Leftward prismatic adaptation


Supramarginal gyrus



The work was supported by Grants from the Swiss National Science Foundation to S. Crottaz-Herbette (Marie-Heim-Vögtlin fellowship FNS PMPDP3_129028) and S. Clarke (FNS 320030-159708) and from the Biaggi Foundation to S. Crottaz-Herbette. The work was supported by the Centre d’Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL). We thank Jean-Baptiste Ledoux for his help in data acquisition.

Compliance with ethical standards

Conflict of interest

The authors reported no conflict of interest.

Supplementary material

429_2017_1572_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1209 KB)


  1. Alho K, Medvedev SV, Pakhomov SV et al (1999) Selective tuning of the left and right auditory cortices during spatially directed attention. Cogn Brain Res 7:335–341. CrossRefGoogle Scholar
  2. Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. NeuroImage 22:401–408. CrossRefPubMedGoogle Scholar
  3. At A, Spierer L, Clarke S (2011) The role of the right parietal cortex in sound localization: a chronometric single pulse transcranial magnetic stimulation study. Neuropsychologia 49:2794–2797. CrossRefPubMedGoogle Scholar
  4. Bellmann A, Meuli R, Clarke S (2001) Two types of auditory neglect. Brain J Neurol 124:676–687CrossRefGoogle Scholar
  5. Berberovic N, Mattingley JB (2003) Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space. Neuropsychologia 41:493–503. CrossRefPubMedGoogle Scholar
  6. Bisiach E, Cornacchia L, Sterzi R, Vallar G (1984) Disorders of perceived auditory lateralization after lesions of the right hemisphere. Brain J Neurol 107(Pt 1):37–52CrossRefGoogle Scholar
  7. Bonath B, Noesselt T, Martinez A et al (2007) Neural basis of the ventriloquist illusion. Curr Biol 17:1697–1703. CrossRefPubMedGoogle Scholar
  8. Bonath B, Noesselt T, Krauel K et al (2014) Audio-visual synchrony modulates the ventriloquist illusion and its neural/spatial representation in the auditory cortex. NeuroImage 98:425–434. CrossRefPubMedGoogle Scholar
  9. Bourquin NM-P, Murray MM, Clarke S (2013) Location-independent and location-linked representations of sound objects. NeuroImage 73:40–49. CrossRefPubMedGoogle Scholar
  10. Brunetti M, Belardinelli P, Caulo M et al (2005) Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Hum Brain Mapp 26:251–261. CrossRefPubMedGoogle Scholar
  11. Bultitude JH, Van der Stigchel S, Nijboer TCW (2013) Prism adaptation alters spatial remapping in healthy individuals: evidence from double-step saccades. Cortex 49:759–770. CrossRefPubMedGoogle Scholar
  12. Bushara KO, Weeks RA, Ishii K et al (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766. CrossRefPubMedGoogle Scholar
  13. Cammoun L, Thiran JP, Griffa A et al (2015) Intrahemispheric cortico-cortical connections of the human auditory cortex. Brain Struct Funct 220:3537–3553. CrossRefPubMedGoogle Scholar
  14. Chapman HL, Eramudugolla R, Gavrilescu M et al (2010) Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms. Neuropsychologia 48:2595–2601. CrossRefPubMedGoogle Scholar
  15. Clarke S, Crottaz-Herbette S (2016) Modulation of visual attention by prismatic adaptation. Neuropsychologia 92:31–41. CrossRefPubMedGoogle Scholar
  16. Clarke S, Geiser E (2015) Roaring lions and chirruping lemurs: how the brain encodes sound objects in space. Neuropsychologia 75:304–313. CrossRefPubMedGoogle Scholar
  17. Clarke S, Bellmann A, Meuli RA et al (2000) Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways. Neuropsychologia 38:797–807. CrossRefPubMedGoogle Scholar
  18. Clower DM, Hoffman JM, Votaw JR et al (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621. CrossRefPubMedGoogle Scholar
  19. Colent C, Pisella L, Bernieri C et al (2000) Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? NeuroReport 11:1899CrossRefPubMedGoogle Scholar
  20. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. CrossRefPubMedGoogle Scholar
  21. Crottaz-Herbette S, Fornari E, Clarke S (2014) Prismatic adaptation changes visuospatial representation in the inferior parietal lobule. J Neurosci 34:11803–11811. CrossRefPubMedGoogle Scholar
  22. Crottaz-Herbette S, Fornari E, Notter MP et al (2017a) Reshaping the brain after stroke: the effect of prismatic adaptation in patients with right brain damage. Neuropsychologia. PubMedGoogle Scholar
  23. Crottaz-Herbette S, Fornari E, Tissieres I, Clarke S (2017b) A brief exposure to leftward prismatic adaptation enhances the representation of the ipsilateral, right visual field in the right inferior parietal lobule. eNeuro ENEURO.0310–17.2017.
  24. Danckert J, Ferber S, Goodale MA (2008) Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci 28:1696–1704. CrossRefPubMedGoogle Scholar
  25. De Santis L, Clarke S, Murray MM (2007) Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging. Cereb Cortex 17:9–17. CrossRefPubMedGoogle Scholar
  26. Deouell LY, Heller AS, Malach R et al (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55:985–996. CrossRefPubMedGoogle Scholar
  27. Derey K, Valente G, de Gelder B, Formisano E (2016) Opponent coding of sound location (azimuth) in planum temporale is robust to sound-level variations. Cereb Cortex N Y 26:450–464. CrossRefGoogle Scholar
  28. Dietz MJ, Friston KJ, Mattingley JB et al (2014) Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect. J Neurosci 34:5003–5011. CrossRefPubMedCentralPubMedGoogle Scholar
  29. Eramudugolla R, Boyce A, Irvine DRF, Mattingley JB (2010) Effects of prismatic adaptation on spatial gradients in unilateral neglect: a comparison of visual and auditory target detection with central attentional load. Neuropsychologia 48:2681–2692. CrossRefPubMedGoogle Scholar
  30. Fortis P, Goedert KM, Barrett AM (2011) Prism adaptation differently affects motor-intentional and perceptual-attentional biases in healthy individuals. Neuropsychologia 49:2718–2727. CrossRefPubMedCentralPubMedGoogle Scholar
  31. Häkkinen S, Ovaska N, Rinne T (2015) Processing of pitch and location in human auditory cortex during visual and auditory tasks. Front Psychol 6.
  32. Harrington IA, Stecker GC, Macpherson EA, Middlebrooks JC (2008) Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hear Res 240:22–41. CrossRefPubMedCentralPubMedGoogle Scholar
  33. Heilman KM, Valenstein E (1972) Auditory neglect in man. Arch Neurol 26:32–35. CrossRefPubMedGoogle Scholar
  34. Hugdahl K, Wester K, Asbjørnsen A (1991) Auditory neglect after right frontal lobe and right pulvinar thalamic lesions. Brain Lang 41:465–473. CrossRefPubMedGoogle Scholar
  35. Igelström KM, Graziano MSA (2017) The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia.
  36. Itoh K, Yumoto M, Uno A et al (2000) Temporal stream of cortical representation for auditory spatial localization in human hemispheres. Neurosci Lett 292:215–219. CrossRefPubMedGoogle Scholar
  37. Jacquin-Courtois S, Rode G, Pavani F et al (2010) Effect of prism adaptation on left dichotic listening deficit in neglect patients: glasses to hear better? Brain 133:895–908. CrossRefPubMedGoogle Scholar
  38. Jacquin-Courtois S, O’Shea J, Luauté J et al (2013) Rehabilitation of spatial neglect by prism adaptation: a peculiar expansion of sensorimotor after-effects to spatial cognition. Neurosci Biobehav Rev 37:594–609. CrossRefPubMedGoogle Scholar
  39. Kagerer FA, Contreras-Vidal JL (2009) Adaptation of sound localization induced by rotated visual feedback in reaching movements. Exp Brain Res 193:315–321. CrossRefPubMedGoogle Scholar
  40. Kaiser J, Lutzenberger W (2001) Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans. Neurosci Lett 314:17–20. CrossRefPubMedGoogle Scholar
  41. Kaiser J, Lutzenberger W, Preissl H et al (2000) Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci Off J Soc Neurosci 20:6631–6639Google Scholar
  42. Küper M, Wünnemann MJS, Thürling M et al (2014) Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study. Hum Brain Mapp 35:1574–1586. CrossRefPubMedGoogle Scholar
  43. Lewald J, Getzmann S (2011) When and where of auditory spatial processing in cortex: a novel approach using electrotomography. PLoS One 6:e25146. CrossRefPubMedCentralPubMedGoogle Scholar
  44. Lewald J, Foltys H, Töpper R (2002) Role of the posterior parietal cortex in spatial hearing. J Neurosci Off J Soc Neurosci 22:RC207Google Scholar
  45. Luauté J, Schwartz S, Rossetti Y et al (2009) Dynamic changes in brain activity during prism adaptation. J Neurosci Off J Soc Neurosci 29:169–178. CrossRefGoogle Scholar
  46. Maeder PP, Meuli RA, Adriani M et al (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. NeuroImage 14:802–816. CrossRefPubMedGoogle Scholar
  47. Martín-Arévalo E, Schintu S, Farnè A et al (2016) Adaptation to leftward shifting prisms alters motor interhemispheric inhibition. Cereb Cortex. Google Scholar
  48. McLaughlin SA, Higgins NC, Stecker GC (2016) Tuning to binaural cues in human auditory cortex. J Assoc Res Otolaryngol 17:37–53. CrossRefPubMedGoogle Scholar
  49. Michel C (2003) Simulating unilateral neglect in normals using prism adaptation: implications for theory. ScienceDirect. Accessed 9 Nov 2017
  50. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  51. Petit L, Simon G, Joliot M et al (2007) Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study. Restor Neurol Neurosci 25:211–225PubMedGoogle Scholar
  52. Pisella L, Rode G, Farnè A et al (2006) Prism adaptation in the rehabilitation of patients with visuo-spatial cognitive disorders. Curr Opin Neurol 19:534–542. CrossRefPubMedGoogle Scholar
  53. Recanzone GH (1998) Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc Natl Acad Sci 95:869–875CrossRefPubMedCentralPubMedGoogle Scholar
  54. Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci 97:11829–11835. CrossRefPubMedCentralPubMedGoogle Scholar
  55. Redding GM, Wallace B (2006) Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 44:1–20. CrossRefPubMedGoogle Scholar
  56. Redding GM, Rossetti Y, Wallace B (2005) Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav Rev 29:431–444. CrossRefPubMedGoogle Scholar
  57. Rode G, Klos T, Courtois-Jacquin S et al (2006) Neglect and prism adaptation: a new therapeutic tool for spatial cognition disorders. Restor Neurol Neurosci 24:347–356PubMedGoogle Scholar
  58. Rode G, Revol P, Rossetti Y et al (2007) Looking while imagining: the influence of visual input on representational neglect. Neurology 68:432–437. CrossRefPubMedGoogle Scholar
  59. Rossetti Y, Rode G, Pisella L et al (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169. CrossRefPubMedGoogle Scholar
  60. Rushworth MFS, Krams M, Passingham RE (2001) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13:698–710. CrossRefPubMedGoogle Scholar
  61. Rushworth MFS, Johansen-Berg H, Göbel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. NeuroImage 20(Suppl 1):S89–S100. CrossRefPubMedGoogle Scholar
  62. Salo E, Rinne T, Salonen O, Alho K (2013) Brain activity during auditory and visual phonological, spatial and simple discrimination tasks. Brain Res 1496:55–69. CrossRefPubMedGoogle Scholar
  63. Shulman GL, McAvoy MP, Cowan MC et al (2003) Quantitative analysis of attention and detection signals during visual search. J Neurophysiol 90:3384–3397. CrossRefPubMedGoogle Scholar
  64. Shulman GL, Pope DLW, Astafiev SV et al (2010) Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 30:3640–3651. CrossRefPubMedCentralPubMedGoogle Scholar
  65. Smith DV, Davis B, Niu K et al (2010) Spatial attention evokes similar activation patterns for visual and auditory stimuli. J Cogn Neurosci 22:347–361. CrossRefPubMedCentralPubMedGoogle Scholar
  66. Spierer L, Meuli R, Clarke S (2007) Extinction of auditory stimuli in hemineglect: space versus ear. Neuropsychologia 45:540–551. CrossRefPubMedGoogle Scholar
  67. Spierer L, Murray MM, Tardif E, Clarke S (2008) The path to success in auditory spatial discrimination: electrical neuroimaging responses within the supratemporal plane predict performance outcome. NeuroImage 41:493–503. CrossRefPubMedGoogle Scholar
  68. Spierer L, Bellmann-Thiran A, Maeder P et al (2009) Hemispheric competence for auditory spatial representation. Brain 132:1953–1966. CrossRefPubMedGoogle Scholar
  69. Stecker GC, Mickey BJ, Macpherson EA, Middlebrooks JC (2003) Spatial sensitivity in field PAF of cat auditory cortex. J Neurophysiol 89:2889–2903. CrossRefPubMedGoogle Scholar
  70. Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78. CrossRefPubMedCentralPubMedGoogle Scholar
  71. Stecker GC, McLaughlin SA, Higgins NC (2015) Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex. NeuroImage 120:456–466. CrossRefPubMedCentralPubMedGoogle Scholar
  72. Striemer CL, Danckert J (2010) Dissociating perceptual and motor effects of prism adaptation in neglect. Neuroreport 21:436–441. CrossRefPubMedGoogle Scholar
  73. Striemer C, Sablatnig J, Danckert J (2006) Differential influences of prism adaptation on reflexive and voluntary covert attention. J Int Neuropsychol Soc 12:337–349. CrossRefPubMedGoogle Scholar
  74. Sturm W, Longoni F, Fimm B et al (2004) Network for auditory intrinsic alertness: a PET study. Neuropsychologia 42:563–568. CrossRefPubMedGoogle Scholar
  75. Tanaka H, Hachisuka K, Ogata H (1999) Sound lateralisation in patients with left or right cerebral hemispheric lesions: relation with unilateral visuospatial neglect. J Neurol Neurosurg Psychiatry 67:481–486CrossRefPubMedCentralPubMedGoogle Scholar
  76. Tardif E, Murray MM, Meylan R et al (2006) The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res 1092:161–176. CrossRefPubMedGoogle Scholar
  77. Thiel CM, Fink GR (2007) Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J Neurophysiol 97:2758–2768. CrossRefPubMedGoogle Scholar
  78. Thiran AB, Clarke S (2003) Preserved use of spatial cues for sound segregation in a case of spatial deafness. Neuropsychologia 41:1254–1261. CrossRefPubMedGoogle Scholar
  79. Tissieres I, Elamly M, Clarke S, Crottaz-Herbette S (2017) For better or worse: the effect of prismatic adaptation on auditory neglect. In: Neural plast. Accessed 1 Nov 2017
  80. Todd JJ, Fougnie D, Marois R (2005) Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol Sci 16:965–972. CrossRefPubMedGoogle Scholar
  81. Trapeau R, Schönwiesner M (2015) Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex. NeuroImage 118:26–38. CrossRefPubMedGoogle Scholar
  82. Tzourio N, El Massioui F, Crivello F et al (1997) Functional anatomy of human auditory attention studied with PET. NeuroImage 5:63–77. CrossRefPubMedGoogle Scholar
  83. Wanrooij MMV, Opstal AJV (2005) Relearning sound localization with a new ear. J Neurosci 25:5413–5424. CrossRefPubMedGoogle Scholar
  84. Woods TM, Lopez SE, Long JH et al (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96:3323–3337. CrossRefPubMedGoogle Scholar
  85. Yang NYH, Zhou D, Chung RCK et al (2013) Rehabilitation interventions for unilateral neglect after stroke: a systematic review from 1997 through 2012. Front Hum Neurosci 7:187. CrossRefPubMedCentralPubMedGoogle Scholar
  86. Zimmer U, Lewald J, Erb M, Karnath H-O (2006) Processing of auditory spatial cues in human cortex: an fMRI study. Neuropsychologia 44:454–461. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
  2. 2.CIBM (Centre d’Imagerie Biomédicale), Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland

Personalised recommendations