Advertisement

Brain Structure and Function

, Volume 222, Issue 4, pp 1733–1751 | Cite as

A diffusion tensor imaging atlas of white matter in tree shrew

  • Jian-kun Dai
  • Shu-xia Wang
  • Dai Shan
  • Hai-chen Niu
  • Hao Lei
Original Article

Abstract

Tree shrews are small mammals now commonly classified in the order of Scandentia, but have relatively closer affinity to primates than rodents. The species has a high brain-to-body mass ratio and relatively well-differentiated neocortex, and thus has been frequently used in neuroscience research, especially for studies on vision and neurological/psychiatric diseases. The available atlases on tree shrew brain provided only limited information on white matter (WM) anatomy. In this study, diffusion tensor imaging (DTI) was used to study the WM anatomy of tree shrew, with the goal to establish an image-based WM atlas. DTI and T2-weighted anatomical images were acquired in vivo and from fixed brain samples. Deterministic tractography was used for three-dimensional reconstruction and rendering of major WM tracts. Myelin and neurofilaments staining were used to study the microstructural properties of certain WM tracts. Taking into account prior knowledge on tree shrew neuroanatomy, tractography results, and comparisons to the homologous structures in rodents and primates, an image-based WM atlas of tree shrew brain was constructed, which is available to research community upon request.

Keywords

Tree shrew Brain Diffusion tensor imaging White matter Atlas 

Notes

Acknowledgments

The authors thank Dr. Yun-ling Gao for her assistance in histological staining. This work was supported by Grants from Chinese Ministry of Science and Technology (2011CB707800) and Natural Science Foundation of China (81171302 and 21221064).

References

  1. Aboitiz F, Garcia VR (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Rev 25:381–396PubMedCrossRefGoogle Scholar
  2. Adluru N, Zhang H, Fox AS et al (2012) A diffusion tensor brain template for rhesus macaques. Neuroimage 59:306–318PubMedCrossRefGoogle Scholar
  3. Aggarwal M, Nauen DW, Troncoso JC et al (2015) Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI. Neuroimage 105:198–207PubMedCrossRefGoogle Scholar
  4. Atlan G, Terem A, Peretz-Rivlin N et al (2016) Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol. doi: 10.1002/cne.23997 PubMedGoogle Scholar
  5. Avants BB, Tustison NJ, Song G et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044PubMedCrossRefGoogle Scholar
  6. Bedwell SA, Billett EE, Crofts JJ et al (2015) The topology of connections between rat prefrontal and temporal cortices. Front Syst Neurosci 9:80PubMedPubMedCentralCrossRefGoogle Scholar
  7. Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155PubMedCrossRefGoogle Scholar
  8. Benveniste H, Einstein G, Kim KR et al (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96:14079–14084PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berke JJ (1960) The claustrum, the external capsule and the extreme capsule of Macaca mulatta. J Comp Neurol 115:297–331PubMedCrossRefGoogle Scholar
  10. Bora E, Yucel M, Fornito A et al (2012) White matter microstructure in opiate addiction. Addict Biol 17:141–148PubMedCrossRefGoogle Scholar
  11. Bosking WH, Zhang Y, Schofield B et al (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17:2112–2127PubMedGoogle Scholar
  12. Calabrese E, Badea A, Coe CL et al (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117:408–416PubMedPubMedCentralCrossRefGoogle Scholar
  13. Campbell CB, Jane JA, Yashon D (1967) The retinal projections of the tree shrew and hedgehog. Brain Res 5:406–418PubMedCrossRefGoogle Scholar
  14. Cao J, Yang EB, Su JJ et al (2003) The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 32:123–130PubMedCrossRefGoogle Scholar
  15. Carey RG, Neal TL (1986) Reciprocal connections between the claustrum and visual thalamus in the tree shrew (tupaia-glis). Brain Res 386:155–168PubMedCrossRefGoogle Scholar
  16. Carey RG, Fitzpatrick D, Diamond IT (1979) Layer I of striate cortex of tupaia glis and galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 186:393–437PubMedCrossRefGoogle Scholar
  17. Carey RG, Bear MF, Diamond IT (1980) Laminar organization of the reciprocal projections between the claustrum and striate cortex in the tree shrew, tupaia-glis. Brain Res 184:193–198PubMedCrossRefGoogle Scholar
  18. Casseday HJ, Diamond IT, Harting JK (1976) Auditory pathways to the cortex in tupaia glis. J Comp Neurol 166:303–340PubMedCrossRefGoogle Scholar
  19. Catani M, Howard RJ, Pajevic S et al (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRefGoogle Scholar
  20. Chan E, Kovacevic N, Ho SK et al (2007) Development of a high resolution three-dimensional surgical atlas of the murine head for strains 129S1/SvImJ and C57Bl/6J using magnetic resonance imaging and micro-computed tomography. Neuroscience 144:604–615PubMedCrossRefGoogle Scholar
  21. Chomsung RD, Petry HM, Bickford ME (2008) Ultrastructural examination of diffuse and specific tectopulvinar projections in the tree shrew. J Comp Neurol 510:24–46PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chomsung RD, Wei H, Day-Brown JD et al (2010) Synaptic organization of connections between the temporal cortex and pulvinar nucleus of the tree shrew. Cereb Cortex 20:997–1011PubMedCrossRefGoogle Scholar
  23. Chuang N, Mori S, Yamamoto A et al (2011) An MRI-based atlas and database of the developing mouse brain. Neuroimage 54:80–89PubMedCrossRefGoogle Scholar
  24. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dalby RB, Frandsen J, Chakravarty MM et al (2010) Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression. Psychiatry Res 184:38–48PubMedCrossRefGoogle Scholar
  26. Day-Brown JD, Wei H, Chomsung RD et al (2010) Pulvinar projections to the striatum and amygdala in the tree shrew. Front Neuroanat 4:143PubMedPubMedCentralCrossRefGoogle Scholar
  27. Delatour B, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407PubMedCrossRefGoogle Scholar
  28. Fan Y, Huang ZY, Cao CC et al (2013) Genome of the Chinese tree shrew. Nat Commun 4:1426PubMedCrossRefGoogle Scholar
  29. Figini M, Zucca I, Aquino D et al (2015) In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imaging 33:296–303PubMedCrossRefGoogle Scholar
  30. Fitzpatrick D (1996) The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341PubMedCrossRefGoogle Scholar
  31. Fitzpatrick D, Carey RG, Diamond IT (1980) The projection of the superior colliculus upon the lateral geniculate-body in tupaia-glis and galago-senegalensis. Brain Res 194:494–499PubMedCrossRefGoogle Scholar
  32. Flugge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (tupaia belangeri). J Comp Neurol 343:597–608PubMedCrossRefGoogle Scholar
  33. Fox AS, Oler JA, do Tromp PM et al (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38:319–329PubMedPubMedCentralCrossRefGoogle Scholar
  34. Foxley S, Jbabdi S, Clare S et al (2014) Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T. Neuroimage 102(Pt 2):579–589PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190PubMedCrossRefGoogle Scholar
  36. Fuchs E, Flugge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258PubMedCrossRefGoogle Scholar
  37. Glickstein M (1967) Laminar structure of the dorsal lateral geniculate nucleus in the tree shrew (tupaia glis). J Comp Neurol 131:93–102PubMedCrossRefGoogle Scholar
  38. Hall WC, Lee P (1993) Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J Comp Neurol 332:213–223PubMedCrossRefGoogle Scholar
  39. Hall WC, Lee P (1997) Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis Neurosci 14:647–661PubMedCrossRefGoogle Scholar
  40. Harting JK, Hall WC, Diamond IT et al (1973) Anterograde degeneration study of the superior colliculus in tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386PubMedCrossRefGoogle Scholar
  41. Harting JK, Huerta MF, Hashikawa T et al (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304:275–306PubMedCrossRefGoogle Scholar
  42. Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801PubMedCrossRefGoogle Scholar
  43. Jain N, Preuss TM, Kaas JH (1994) Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews. Vis Neurosci 11:731–741PubMedCrossRefGoogle Scholar
  44. Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1:169–183PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaas JH (2011) The evolution of auditory cortex: the core areas. In: Jeffery A, Winer CES (eds) The auditory cortex. Springer, US, pp 407–427CrossRefGoogle Scholar
  46. Keuker JI, de Biurrun G, Luiten PG et al (2004) Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews. J Comp Neurol 468:509–517PubMedCrossRefGoogle Scholar
  47. Kowianski P, Dziewiatkowski J, Kowianska J et al (1999) Comparative anatomy of the claustrum in selected species: a morphometric analysis. Brain Behav Evol 53:44–54PubMedCrossRefGoogle Scholar
  48. Lee P, Hall WC (1995) Interlaminar connections of the superior colliculus in the tree shrew. II: projections from the superficial gray to the optic layer. Vis Neurosci 12:573–588PubMedCrossRefGoogle Scholar
  49. Lende RA (1970) Cortical localization in the tree shrew (tupaia). Brain Res 18:61–75PubMedCrossRefGoogle Scholar
  50. Li Q, Ni X (2016) An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”. Sci Rep 6:18627PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu FG, Miyamoto MM, Freire NP et al (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789PubMedCrossRefGoogle Scholar
  52. Luppino G, Matelli M, Carey RG et al (1988) New view of the organization of the pulvinar nucleus in tupaia as revealed by tectopulvinar and pulvinar-cortical projections. J Comp Neurol 273:67–86PubMedCrossRefGoogle Scholar
  53. Lyon DC, Jain N, Kaas JH (2003a) The visual pulvinar in tree shrews I. Multiple subdivisions revealed through acetylcholinesterase and Cat-301 chemoarchitecture. J Comp Neurol 467:593–606PubMedCrossRefGoogle Scholar
  54. Lyon DC, Jain N, Kaas JH (2003b) The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex. J Comp Neurol 467:607–627PubMedCrossRefGoogle Scholar
  55. Ma KL, Gao JH, Huang ZQ et al (2013) Motor function in MPTP-treated tree shrews (tupaia belangeri chinensis). Neurochem Res 38:1935–1940CrossRefGoogle Scholar
  56. Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358PubMedCrossRefGoogle Scholar
  57. Marrocco RT, De Valois RL, Boles JI (1970) A stereotaxic atlas of the brain of the tree shrew (tupaia glis). J Hirnforsch 12:307–312PubMedGoogle Scholar
  58. Mars RB, Foxley S, Verhagen L et al (2015) The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study. Brain Struct Funct. doi: 10.1007/s00429-015-1146-0 PubMedPubMedCentralGoogle Scholar
  59. Mathur BN (2014) The claustrum in review. Front Syst Neurosci 8:48PubMedPubMedCentralCrossRefGoogle Scholar
  60. Matsuo K, Mizuno T, Yamada K et al (2008) Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology 50:605–611PubMedCrossRefGoogle Scholar
  61. May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378PubMedCrossRefGoogle Scholar
  62. McCollum LA, Roberts RC (2014) Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 271:23–34PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480PubMedCrossRefGoogle Scholar
  64. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRefGoogle Scholar
  65. Mori S, Oishi K, Jiang H et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582PubMedPubMedCentralCrossRefGoogle Scholar
  66. Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  67. Ohl F, Kirschbaum C, Fuchs E (1999) Evaluation of hypothalamo-pituitary-adrenal activity in the tree shrew (tupaia belangeri) via salivary cortisol measurement. Lab Anim 33:269–274PubMedCrossRefGoogle Scholar
  68. Ohl F, Michaelis T, Vollmann-Honsdorf GK et al (2000) Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: a pilot-study in tree shrews. Psychoneuroendocrinology 25:357–363PubMedCrossRefGoogle Scholar
  69. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRefGoogle Scholar
  70. Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540PubMedCrossRefGoogle Scholar
  71. Palchaudhuri M, Flugge G (2005) 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 321:159–172PubMedCrossRefGoogle Scholar
  72. Park S, Tyszka JM, Allman JM (2012) The claustrum and insula in microcebus murinus: a high resolution diffusion imaging study. Front Neuroanat 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pawlik M, Fuchs E, Walker LC et al (1999) Primate-like amyloid-β sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 20:47–51PubMedCrossRefGoogle Scholar
  74. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San DiegoGoogle Scholar
  75. Peng Y, Ye Z, Zou R et al (1991) Biology of Chinese tree shrews. Yunnan Science and Technology Press, KunmingGoogle Scholar
  76. Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315PubMedCrossRefGoogle Scholar
  77. Poletti CE, Creswell G (1977) Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol 175:101–128PubMedCrossRefGoogle Scholar
  78. Pritzel M, Kretz R, Rager G (1988) Callosal projections between areas-17 in the adult tree shrew (tupaia-belangeri). Exp Brain Res 72:481–493PubMedCrossRefGoogle Scholar
  79. Remple MS, Reed JL, Stepniewska I et al (2006) Organization of frontoparietal cortex in the tree shrew (tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 497:133–154PubMedCrossRefGoogle Scholar
  80. Remple MS, Reed JL, Stepniewska I et al (2007) The organization of frontoparietal cortex in the tree shrew (tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. J Comp Neurol 501:121–149PubMedCrossRefGoogle Scholar
  81. Rice MW, Roberts RC, Melendez-Ferro M et al (2011) Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 5:53PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rilling JK, Glasser MF, Preuss TM et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428PubMedCrossRefGoogle Scholar
  83. Rilling JK, Glasser MF, Jbabdi S et al (2011) Continuity, divergence, and the evolution of brain language pathways. Front Evol Neurosci 3:11PubMedGoogle Scholar
  84. Sati P, Silva AC, van Gelderen P et al (2012) In vivo quantification of T(2) anisotropy in white matter fibers in marmoset monkeys. Neuroimage 59:979–985PubMedCrossRefGoogle Scholar
  85. Saur D, Kreher BW, Schnell S et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  87. Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653PubMedCrossRefGoogle Scholar
  88. Shen F, Duan Y, Jin S et al (2014) Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 8:333PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6:137–192PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shibata S, Komaki Y, Seki F et al (2015) Connectomics: comprehensive approaches for whole-brain mapping. Microscopy 64:57–67PubMedCrossRefGoogle Scholar
  91. Sillitoe RV, Malz CR, Rockland K et al (2004) Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in macaca mulatta and tupaia belangeri. J Anat 204:257–269PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219PubMedCrossRefGoogle Scholar
  93. Thiebaut de Schotten M, Dell’Acqua F, Valabregue R et al (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96PubMedCrossRefGoogle Scholar
  94. Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (tupaia glis). Williams & Wilkins, BaltimoreGoogle Scholar
  96. Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 22:53–66CrossRefGoogle Scholar
  97. Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRefGoogle Scholar
  98. Wang S, Shan D, Dai J et al (2013) Anatomical MRI templates of tree shrew brain for volumetric analysis and voxel-based morphometry. J Neurosci Methods 220:9–17PubMedCrossRefGoogle Scholar
  99. Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (tupaia belangeri). Anat Rec (Hoboken) 292:994–1027PubMedCentralCrossRefGoogle Scholar
  100. Yamashita A, Fuchs E, Taira M et al (2010) Amyloid beta (Abeta) protein- and amyloid precursor protein (APP)-immunoreactive structures in the brains of aged tree shrews. Curr Aging Sci 3:230–238PubMedCrossRefGoogle Scholar
  101. Yamashita A, Fuchs E, Taira M et al (2012) Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 41:147–157PubMedCrossRefGoogle Scholar
  102. Yang W, Liu J (1990) A stereotaxic atlas of the brain of tupaia belangeri and macaque monkey living in Guangxi. Guangxi Science and Technology Publishing House, GuangxiGoogle Scholar
  103. Zambello E, Fuchs E, Abumaria N et al (2010) Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew. Prog Neuropsychopharmacol Biol Psychiatry 34:122–130PubMedCrossRefGoogle Scholar
  104. Zhang H, Yushkevich PA, Rueckert D et al (2007) Unbiased white matter atlas construction using diffusion tensor images. Med Image Comput Comput Assist Interv 4792:211–218Google Scholar
  105. Zilles K (1978) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of tupaia belangeri. Anat Embryol (Berl) 153:195–212CrossRefGoogle Scholar
  106. Zuo N, Fang J, Lv X et al (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS One 7:e37561PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jian-kun Dai
    • 1
    • 2
  • Shu-xia Wang
    • 1
  • Dai Shan
    • 1
  • Hai-chen Niu
    • 3
  • Hao Lei
    • 1
  1. 1.National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Xuzhou Medical UniversityXuzhouChina

Personalised recommendations