Skip to main content

Advertisement

Log in

Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Systems-level consolidation models propose that recent memories are initially hippocampus-dependent. When remote, they are partially or completely dependent upon the medial prefrontal cortex (mPFC). An implication of the mPFC in recent memory, however, is still debated. Different amounts of muscimol (MSCI 0, 30, 50, 80 and 250 ng in 1 µL PBS) were used to assess the impact of inactivation of the dorsal hippocampus (dHip) or the mPFC (targeting the prelimbic cortex) on a 24-h delayed retrieval of a platform location that rats had learned drug-free in a water maze. The two smallest amounts of MSCI (30 and 50 ng) did not affect recall, whatever the region. 80 ng MSCI infused into the dHip disrupted spatial memory retrieval, as did the larger amount. Infusion of MSCI into the mPFC did not alter performance in the 0–80 ng range. At 250 ng, it induced an as dramatic memory impairment as after efficient dHip inactivation. Stereological quantifications showed that 80 ng MSCI in the dHip and 250 ng MSCI in the mPFC induced a more than 80 % reduction of c-Fos expression, suggesting that, beyond the amounts infused, it is the magnitude of the neuronal activity decrease which is determinant as to the functional outcome of the inactivation. Because, based on the literature, even 250 ng MSCI is a small amount, our results point to a contribution of the mPFC to the recall of a recently acquired spatial memory and thereby extend our knowledge about the functions of this major actor of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen TA, Narayanan NS, Kholodar-Smith DB, Zhao Y, Laubach M, Brown TH (2008) Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods 171:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arikan R, Nicquet MJ, Blake NMJ, Erinjeri JP, Woolsey TA, Giraud L, Highstein SM (2002) A method to measure the effective spread of focally injected muscimol into the central nervous system with electrophysiology and light microscopy. J Neurosci Methods 118:51–57

    Article  CAS  PubMed  Google Scholar 

  • Barbosa FF, de Oliveira Pontes IM, Ribeiro S, Ribeiro AM, Silva RH (2012) Differential roles of the dorsal hippocampal regions in the acquisition of spatial and temporal aspects of episodic-like memory. Behav Brain Res 232:269–277

    Article  PubMed  Google Scholar 

  • Barry DN, Commins S (2011) Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci 22:131–142

    Article  CAS  PubMed  Google Scholar 

  • Bekinschtein P, Renner MC, Gonzalez MC, Weisstaub N (2013) Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats. J Neurosci 33:15716–15725

    Article  CAS  PubMed  Google Scholar 

  • Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21:475–485

    Article  CAS  PubMed  Google Scholar 

  • Blum S, Hebert AE, Dash PK (2006) A role for the prefrontal cortex in recall of recent and remote memories. NeuroReport 17:341–344

    Article  PubMed  Google Scholar 

  • Bonnici HM, Chadwick MJ, Lutti A, Hassabis D, Weiskopf N, Maguire EA (2012) Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. J Neurosci 32:16982–16991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Rivera C, Roman-Ortiz C, Brignoni-Perez E, Sotres-Bayon F, Quirk GJ (2014) Neural structures mediating expression and extinction of platform-mediated avoidance. J Neurosci 34(29):9736–9742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cholvin T, Loureiro M, Cassel R, Cosquer B, Geiger K, De Sa Nogueira D, Raingard H, Robelin L, Kelche C, Pereira de Vasconcelos A, Cassel JC (2013) The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 33:8772–8783

    Article  CAS  PubMed  Google Scholar 

  • Churchwell JC, Kesner RP (2011) Hippocampal–prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behav Brain Res 225:389–395

    Article  PubMed Central  PubMed  Google Scholar 

  • Churchwell JC, Morris AM, Musso ND, Kesner RP (2010) Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem 93:415–421

    Article  PubMed  Google Scholar 

  • Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27:840–844

    Article  CAS  PubMed  Google Scholar 

  • Ding HK, Teixeira CM, Frankland PW (2008) Inactivation of the anterior cingulate cortex blocks expression of remote, but not recent, conditioned taste aversion memory. Learn Mem 15:290–293

    Article  PubMed  Google Scholar 

  • Edeline J, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124

    Article  PubMed  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    Article  CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881–883

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Kramar C, Garagoli F, Rossato JI, Weisstaub N, Cammarota M, Medina JH (2013) Medial prefrontal cortex is a crucial node of a rapid learning system that retrieves recent and remote memories. Neurobiol Learn Mem 103:19–25

    Article  PubMed  Google Scholar 

  • Gordon JA (2011) Oscillations and hippocampal–prefrontal synchrony. Curr Opin Neurobiol 21:486–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96(10):857–881

    Article  CAS  PubMed  Google Scholar 

  • Haddon JE, Killcross S (2011) Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response–conflict task. Neuroscience 199:205–212

    Article  CAS  PubMed  Google Scholar 

  • Hok V, Save E, Lenck-Santini PP, Poucet B (2005) Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc Natl Acad Sci USA 102:4602–4607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hok V, Chah E, Save E, Poucet B (2013) Prefrontal cortex focally modulates hippocampal place cell firing patterns. J Neurosci 33:3443–3451

    Article  CAS  PubMed  Google Scholar 

  • Hyman JM, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans JK (2012) Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc Natl Acad Sci 109:5086–5091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izquierdo LA, Barros DM, da Costa JC, Furini C, Zinn C, Cammarota M, Bevilaqua LR, Izquierdo I (2007) A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiol Learn Mem 88:160–166

    Article  PubMed  Google Scholar 

  • Jo YS, Park EH, Kim IH, Park SK, Kim H, Kim HT, Choi JS (2007) The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J Neurosci 27:13567–13578

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Solivan F (2008) The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task. Learn Mem 15:357–367

    Article  PubMed Central  PubMed  Google Scholar 

  • Leon WC, Bruno MA, Allard S, Nader K, Cuello AC (2010) Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem 17:297–305

    Article  CAS  PubMed  Google Scholar 

  • Lesburguères E, Gobbo OL, Alaux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331(6019):924–928

    Article  PubMed  Google Scholar 

  • Lopez J, Herbeaux K, Cosquer B, Engeln M, Muller C, Lazarus C, Kelche C, Bontempi B, Cassel JC, de Vasconcelos AP (2012) Context-dependent modulation of hippocampal and cortical recruitment during remote spatial memory retrieval. Hippocampus 22:827–841

    Article  PubMed  Google Scholar 

  • Loureiro M, Cholvin T, Lopez J, Merienne N, Latreche A, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira de Vasconcelos A (2012a) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. J Neurosci 32:9947–9959

    Article  CAS  PubMed  Google Scholar 

  • Loureiro M, Lecourtier L, Engeln M, Engeln M, Lopez J, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira de Vasconcelos A (2012b) The ventral hippocampus is necessary for expressing a spatial memory. Brain Struct Funct 217:93–106

    Article  PubMed  Google Scholar 

  • Martin JH (1991) Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat. Neurosci Lett 127:160–164

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Ghez C (1999) Pharmacological inactivation in the analysis of the central control of movement. J Neurosci Methods 86:145–159

    Article  CAS  PubMed  Google Scholar 

  • Maviel T, Durkin TP, Menzaghi F, Bontempi B (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305:96–99

    Article  CAS  PubMed  Google Scholar 

  • Nadel L, Hardt O (2011) Update on memory systems and processes. Neuropsychopharmacology 36:251–273

    Article  PubMed Central  PubMed  Google Scholar 

  • Parnell R, Grasby K, Talk A (2012) The prefrontal cortex is required for incidental encoding but not recollection of source information in rodents. Behav Brain Res 232:77–83

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier/Academic, Amsterdam/Boston

    Google Scholar 

  • Pereira de Vasconcelos A, Klur S, Muller C, Cosquer B, Lopez J, Certa U, Cassel JC (2006) Reversible inactivation of the dorsal hippocampus by tetrodotoxin or lidocaine: a comparative study on cerebral functional activity and motor coordination in the rat. Neuroscience 141:1649–1663

    Article  CAS  PubMed  Google Scholar 

  • Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23:R764–R773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214

    Article  CAS  PubMed  Google Scholar 

  • Rich EL, Shapiro ML (2007) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    Article  CAS  PubMed  Google Scholar 

  • Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29:7208–7219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Runyan JD, Moore AN, Dash PK (2004) A role for prefrontal cortex in memory storage for trace fear conditioning. J Neurosci 24:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Shaw CL, Watson GD, Hallock HL, Cline KM, Griffin AL (2013) The role of the medial prefrontal cortex in the acquisition, retention, and reversal of a tactile visuospatial conditional discrimination task. Behav Brain Res 236:94–101

    Article  PubMed Central  PubMed  Google Scholar 

  • Takehara-Nishiuchi K, Nakao K, Kawahara S, Matsuki N, Kirino Y (2006) Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci 26:5049–5058

    Article  CAS  PubMed  Google Scholar 

  • Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW (2006) Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26:7555–7564

    Article  PubMed  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703

    Article  CAS  PubMed  Google Scholar 

  • Van Duuren E, van der Plasse G, van der Blom R, Joosten RN, Mulder AB, Pennartz CM, Feenstra MG (2007) Pharmacological manipulation of neuronal ensemble activity by reverse microdialysis in freely moving rats: a comparative study of the effects of tetrodotoxin, lidocaine, and muscimol. J Pharmacol Exp Ther 323:61–69

    Article  PubMed  Google Scholar 

  • Van Kesteren MTR, Rijpkema M, Ruiter DJ, Fernandez G (2010) Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J Neurosci 30:15888–15894

    Article  PubMed  Google Scholar 

  • Van Kesteren MTR, Ruiter DJ, Fernández G, Henson RN (2012) How schema and novelty augment memory formation. Trends Neurosci 35:211–219

    Article  PubMed  Google Scholar 

  • Vetere G, Restivo L, Cole CJ, Ross PJ, Ammassari-Teule M, Josselyn SA, Frankland PW (2011) Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci USA 108:8456–8460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang G-W, Cai J-X (2008) Reversible disconnection of the hippocampal–prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats. Neurobiol Learn Mem 90:365–373

    Article  CAS  PubMed  Google Scholar 

  • Weible AP, Rowland DC, Monaghan CK, Wolfgang NT, Kentros CG (2012) Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J Neurosci 32:5598–5608

    Article  CAS  PubMed  Google Scholar 

  • West MJ (2013) Getting started in stereology. Cold Spring Harbor Protocols 2013:pdb.top071845

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Moscovitch M, Bontempi B (2010) Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia 48:2339–2356

    Article  PubMed  Google Scholar 

  • Zeithamova D, Dominick AL, Preston AR (2012) Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75:168–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao M-G, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47:859–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wholeheartedly acknowledge the precious contribution of O. Bildstein, G. Edomwonyi and O. Egesi to animal care. They also thank the University of Strasbourg, the CNRS and the INSERM for their financial support, and the French government for a Ph.D. fellowship to TC, ML and RC.

Conflict of interest

None of the authors has any established or potential conflict of interest to declare in relation with the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Pereira de Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholvin, T., Loureiro, M., Cassel, R. et al. Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats. Brain Struct Funct 221, 91–102 (2016). https://doi.org/10.1007/s00429-014-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0894-6

Keywords

Navigation