Abstract
The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
This is a preview of subscription content,
to check access.





References
Alcauter S, Lin W, Smith JK, Gilmore JH, Gao W (2013) Consistent anterior-posterior segregation of the insula during the first two years of life. Cerebral Cortex:doi. doi:10.1093/cercor/bht1312
Amsterdam B (1972) Mirror self-image reactions before age two. Developmental psychology. Psychology 5(4):297–305
Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935. doi:10.1016/j.neuron.2007.10.038
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi:10.1196/annals.1440.011
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106(5):2322–2345. doi:10.1152/jn.00339.2011
Busch T (1995) Gender differences in self-efficacy and attitudes toward computers. J Educ Comput Res 12:147–158
Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151. doi:10.1002/hbm.1048
Chai XJ, Jacobs LF (2009) Sex differences in directional cue use in a virtual landscape. Behav Neurosci 123(2):276–283. doi:10.1037/a0014722
Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47(4):1448–1459. doi:10.1016/j.neuroimage.2009.05.012
Conboy BT, Sommerville JA, Kuhl PK (2008) Cognitive control factors in speech perception at 11 months. Dev Psychol 44(5):1505–1512. doi:10.1037/a0012975
Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. doi:10.1038/nrn755
Craddock RC, James GA, Holtzheimer PE 3rd, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33(8):1914–1928. doi:10.1002/hbm.21333
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853. doi:10.1073/pnas.0601417103
Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, Lord C, Castellanos FX, Milham MP (2010) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69(9):847–856. doi:10.1016/j.biopsych.2010.10.029
Dickstein DP, Gorrostieta C, Ombao H, Goldberg LD, Brazel AC, Gable CJ, Kelly C, Gee DG, Zuo XN, Castellanos FX, Milham MP (2010) Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder. Biol Psychiatry 68(9):839–846. doi:10.1016/j.biopsych.2010.06.029
Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, Counsell SJ, Murgasova M, Aljabar P, Nunes RG, Larkman DJ, Rees G, Edwards AD (2011) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci USA 107(46):20015–20020. doi:10.1073/pnas.1007921107
Ebbels TM, Buxton BF, Jones DT (2006) SpringScape: visualisation of microarray and contextual bioinformatic data using spring embedding and an ‘information landscape’. Bioinformatics 22(14):e99–e107. doi:10.1093/bioinformatics/btl205
Elton A, Gao W (2014) Divergent task-dependent functional connectivity of executive control and salience networks. Cortex; a journal devoted to the study of the nervous system and behavior (in Press)
Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105(10):4028–4032. doi:10.1073/pnas.0800376105
Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381. doi:10.1371/journal.pcbi.1000381
Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, Blythe MS, Giwa A, Schmitt CF, Nigg JT (2010) Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 68(12):1084–1091. doi:10.1016/j.biopsych.2010.07.003
Field T (1979) Differential behavioral and cardiac responses of 3-month-old infants to a mirror and peer. Infant Behav Dev 2:179–184
Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc Natl Acad Sci USA 109(31):12788–12793. doi:10.1073/pnas.1204185109
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi:10.1073/pnas.0504136102
Fransson P, Skiold B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104(39):15531–15536. doi:10.1073/pnas.0704380104
Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14
Gao W, Lin W (2012) Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum Brain Mapp 33(1):192–202. doi:10.1002/hbm.21204
Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci USA 106(16):6790–6795. doi:10.1073/pnas.0811221106
Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W (2011) Temporal and spatial evolution of brain network topology during the first two years of life. PLoS ONE 6(9):e25278. doi:10.1371/journal.pone.0025278
Gao W, Gilmore JH, Shen D, Smith JK, Zhu H, Lin W (2012) The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cereb Cortex:doi. doi:10.1093/cercor/bhs1043
Gao W, Gilmore JH, Alcauter S, Lin W (2013) The dynamic reorganization of the default-mode network during a visual classification task. Front Syst Neurosci 7:34. doi:10.3389/fnsys.2013.00034
Gaulin S (1993) How and why sex differences evolve, with spatial ability as a paradigm example. The development of sex differences and similarities in behavior. Kluwer Academic Publisher, Gers
Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W, Zhu H, Hamer RM, Styner M, Shen D (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex. doi:10.1093/cercor/bhr327
Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642. doi:10.1073/pnas.0308627101
Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98(7):4259–4264. doi:10.1073/pnas.071043098
Haith MM, Hazan C, Goodman GS (1988) Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Dev 59(2):467–479
Harman C, Rothbart MK, Posner MI (1997) Distress and attention interactions in early infancy. Motiv Emot 21:27–43
Johnson MH (2000) Functional brain development in infants: elements of an interactive specialization framework. Child Dev 71(1):75–81
Kail M (1993) Are sex or gender relevant categories to language Performance? A Critical Review. The Development of Sex Differences and Similarities in Behavior. Kluwer Academic Publisher, Gers
Kelly AM, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP (2009) Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19(3):640–657. doi:10.1093/cercor/bhn117
Kilpatrick LA, Zald DH, Pardo JV, Cahill LF (2006) Sex-related differences in amygdala functional connectivity during resting conditions. Neuroimage 30(2):452–461. doi:10.1016/j.neuroimage.2005.09.065
Kostovic I, Judas M, Petanjek Z, Simic G (1995) Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 19(2):85–102
Lin W, Zhu Q, Gao W, Chen Y, Toh CH, Styner M, Gerig G, Smith JK, Biswal B, Gilmore JH (2008) Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol 29(10):1883–1889. doi:10.3174/ajnr.A1256
Posner MI, Rothbart MK (1998) Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci 353(1377):1915–1927. doi:10.1098/rstb.1998.0344
Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67(5):735–748. doi:10.1016/j.neuron.2010.08.017
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012a) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154. doi:10.1016/j.neuroimage.2011.10.018
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012b) Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage. doi:10.1016/j.neuroimage.2012.03.017
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2013) Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76:439–441. doi:10.1016/j.neuroimage.2012.03.017
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. doi:10.1016/j.neuroimage.2013.08.048
Prechtl HFR (1989) Fetal behavior, fetal neurology. Raven Press, New York
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi:10.1073/pnas.98.2.676
Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26(4):231–239. doi:10.1002/hbm.20160
Rothbart MK (1990) Regulatory mechanisms in infant development the development of attention: research and theory. Elsevier/North-Holland, Amstardam
Rothbart MK, Posner MI (2001) Mechanism and variation in the development of attentional networks. Handbook of developmental cognitive neuroscience. MIT Press, Cambridge
Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60(1):623–632. doi:10.1016/j.neuroimage.2011.12.063
Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007
Shen D, Davatzikos C (2004) Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. Neuroimage 21(4):1508–1517. doi:10.1016/j.neuroimage.2003.12.015
Shi F, Yap PT, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLoS ONE 6(4):e18746. doi:10.1371/journal.pone.0018746
Shulman G, Fiez J, Corbetta M, Buckner R, Miezin F (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi:10.1016/j.neuroimage.2004.07.051
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045. doi:10.1073/pnas.0905267106
Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex. doi:10.1093/cercor/bhq035
Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53(1):303–317. doi:10.1016/j.neuroimage.2010.06.016
Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, Liberzon I (2012) Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med 74(9):904–911. doi:10.1097/PSY.0b013e318273bf33
Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF (2012) Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS ONE 7(5):e36356. doi:10.1371/journal.pone.0036356
Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157. doi:10.1371/journal.pbio.1000157
Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacology 35(1):147–168. doi:10.1038/npp.2009.115
Tomasi D, Volkow ND (2012) Gender differences in brain functional connectivity density. Hum Brain Mapp 33(4):849–860. doi:10.1002/hbm.21252
Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342. doi:10.1152/jn.90355.2008
Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2012) Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol Psychiatry. doi:10.1016/j.biopsych.2012.03.026
Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. doi:10.1152/jn.00338.2011
Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100(4):1740–1748. doi:10.1152/jn.90463.2008
Acknowledgments
This work was supported by National Institutes of Health grant R01MH070890-09A1 to JHG; R01NS055754 to WL; Foundation of Hope for Research and Treatment of Mental Illness Award to WG; and UNC-Chapel Hill startup fund to WG.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gao, W., Alcauter, S., Smith, J.K. et al. Development of human brain cortical network architecture during infancy. Brain Struct Funct 220, 1173–1186 (2015). https://doi.org/10.1007/s00429-014-0710-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-014-0710-3