Correlation of PD-L1 expression with immunohistochemically determined molecular profile in endometrial carcinomas


Endometrial carcinoma programmed death-ligand 1 (PD-L1) expression in tumor cells (TCs) and tumor-associated inflammatory cells (ICs) have recently been reported in several studies which vary in terms of their cohort size, design, and methodology. We aimed to assess PD-L1 staining in endometrial carcinomas and correlate this with clinical and pathological factors and PTEN, ARID1A, p53, and MMR protein expression. PD-L1 immunohistochemistry was performed on whole tissue sections of all tumor blocks of 59 consecutive unselected endometrial carcinomas between November 2018 and September 2019. TC and IC PD-L1 positivity with a 1% cut-off value was observed in 10.2% and 67.8% of cases, respectively, and with a 5% cut-off value in 3.4% and 42.4% of cases, respectively. TC PD-L1 positivity with both 1% and 5% cut-off values was significantly related to ARID1A loss (p = 0.001 and p = 0.046, respectively). IC PD-L1 positivity with 1% and 5% cut-off values and combined score were significantly associated with MMR protein deficiency (p = 0.041, p = 0.031, and p = 0.028, respectively). Advanced stage tumors exhibited more frequent PD-L1 expression in ICs (p = 0.039). MELF-type myometrial invasion pattern was more common in tumors with ARID1A loss (p = 0.047). We observed higher rates of IC PD-L1 positivity in endometrial carcinomas than documented in prior studies; this may be related to our usage of “recent” paraffin blocks and whole tissue sections of all tumor blocks. There was a much higher PD-L1 expression in the ICs compared to TCs in our cases. We confirm a previously documented association between MMR deficiency and PD-L1 expression and show a novel association between ARID1A loss and PD-L1 expression in endometrial carcinomas. ARID1A loss represents a potential biomarker of immune checkpoint inhibitor response in endometrial carcinoma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E (2016) Endometrial cancer. Lancet 387(10023):1094–1108.

    Article  Google Scholar 

  2. 2.

    Fashoyin-Aje L, Donoghue M, Chen H, He K, Veeraraghavan J, Goldberg KB, Keegan P, McKee AE, Pazdur R (2019) FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist 24(1):103–109.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Gubens MA, Sequist LV, Stevenson JP, Powell SF, Villaruz LC, Gadgeel SM, Langer CJ, Patnaik A, Borghaei H, Jalal SI, Fiore J, Saraf S, Raftopoulos H, Gandhi L (2019) Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non–small-cell lung cancer: KEYNOTE-021 cohorts D and H. Lung Cancer 130:59–66.

    Article  PubMed  Google Scholar 

  4. 4.

    National Institutes of Health (2016) Study of pembrolizumab (MK-3475) versus placebo after complete resection of high-risk stage III melanoma (MK-3475-054/KEYNOTE-054)

  5. 5.

    Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Mileshkin L et al (2017) Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology 6(2):e1264565.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bregar A, Deshpande A, Grange C, Zi T, Stall J, Hirsch H, Reeves J, Sathyanarayanan S, Growdon WB, Rueda BR (2017) Characterization of immune regulatory molecules B7-H4 and PD-L1 in low and high grade endometrial tumors. Gynecol Oncol 145(3):446–452.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yamashita H, Nakayama K, Ishikawa M, Nakamura K, Ishibashi T, Sanuki K et al (2018) Microsatellite instability is a biomarker for immune checkpoint inhibitors in endometrial cancer. Oncotarget 9(5):5652.

    Article  PubMed  Google Scholar 

  8. 8.

    Li Z, Joehlin-Price AS, Rhoades J, Ayoola-Adeola M, Miller K, Parwani AV, Backes FJ, Felix AS, Suarez AA (2018) Programmed death ligand 1 expression among 700 consecutive endometrial cancers: strong association with mismatch repair protein deficiency. Int J Gynecol Cancer 28(1):59–68.

    Article  PubMed  Google Scholar 

  9. 9.

    Kim J, Kim S, Lee HS, Yang W, Cho H, Chay DB, Cho SJ, Hong S, Kim JH (2018) Prognostic implication of programmed cell death 1 protein and its ligand expressions in endometrial cancer. Gynecol Oncol 149(2):381–387.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Asaka S, Yen TT, Wang TL, Shih IM, Gaillard S (2019) T cell-inflamed phenotype and increased Foxp3 expression in infiltrating T-cells of mismatch-repair deficient endometrial cancers. Mod Pathol 32(4):576–584.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kucukgoz Gulec U, Bagir EK, Paydas S, Guzel AB, Gumurdulu D, Vardar MA (2019) Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) expressions in type 2 endometrial cancer. Arch Gynecol Obstet 300(2):377–382.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Talhouk A, McConechy M, Leung S, Li-Chang H, Kwon J, Melnyk N et al (2015) A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 113(2):299–310.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Pasanen A, Ahvenainen T, Pellinen T, Vahteristo P, Loukovaara M, Bützow R (2020) PD-L1 expression in endometrial carcinoma cells and intratumoral immune cells: differences across histologic and TCGA-based molecular subgroups. Am J Surg Pathol 44(2):174–181.

    Article  PubMed  Google Scholar 

  14. 14.

    Inaguma S, Wang Z, Lasota J, Sarlomo-Rikala M, McCue PA, Ikeda H et al (2016) Comprehensive immunohistochemical study of programmed cell death ligand 1 (PD-L1). Analysis in 5536 cases revealed consistent expression in trophoblastic tumors. Am J Surg Pathol 40(8):1133.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Quick CM, May T, Horowitz NS, Nucci MR (2012) Low-grade, low-stage endometrioid endometrial adenocarcinoma: a clinicopathologic analysis of 324 cases focusing on frequency and pattern of myoinvasion. Int J Gynecol Pathol 31(4):337–343.

    Article  Google Scholar 

  16. 16.

    Mills AM, Liou S, Ford JM, Berek JS, Pai RK, Longacre TA (2014) Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer. Am J Surg Pathol 38(11):1501–1509.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lu F-I, Gilks CB, Mulligan A-M, Ryan P, Allo G, Sy K, Shaw PA, Pollett A, Clarke BA (2012) Prevalence of loss of expression of DNA mismatch repair proteins in primary epithelial ovarian tumors. Int J Gynecol Pathol 31(6):524–531

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Alkushi A, Köbel M, Kalloger SE, Gilks CB (2010) High-grade endometrial carcinoma: serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol 29(4):343–350.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Köbel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG (2019) Interpretation of P53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility. Int J Gynecol Pathol 38(1 Suppl 1):123–131.

    CAS  Article  Google Scholar 

  21. 21.

    Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J, Hicks JL, Park BH, Humphreys E, Partin AW, Han M, Netto GJ, Isaacs WB, de Marzo AM (2011) PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res 17(20):6563–6573.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lotan TL, Wei W, Ludkovski O, Morais CL, Guedes LB, Jamaspishvili T, Lopez K, Hawley ST, Feng Z, Fazli L, Hurtado-Coll A, McKenney JK, Simko J, Carroll PR, Gleave M, Lin DW, Nelson PS, Thompson IM, True LD, Brooks JD, Lance R, Troyer D, Squire JA (2016) Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Mod Pathol 29(8):904–914.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, MS MJ, Shah S, Hanks D, Wang J, Lunceford J, Savage MJ, Juco J, Emancipator K (2018) Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 143(3):330–337.

    Article  PubMed  Google Scholar 

  24. 24.

    Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, Stover E, Strickland KC, D’Andrea AD, Wu CJ, Matulonis UA, Konstantinopoulos PA (2015) Association of polymerase e–mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol 1(9):1319–1323.

    Article  PubMed  Google Scholar 

  25. 25.

    Sloan EA, Ring KL, Willis BC, Modesitt SC, Mills AM (2017) PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including Lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am J Surg Pathol 41(3):326–333.

    Article  PubMed  Google Scholar 

  26. 26.

    Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, Homer R, West WW, Wu H, Roden AC, Fujimoto J, Yu H, Anders R, Kowalewski A, Rivard C, Rehman J, Batenchuk C, Burns V, Hirsch FR, Wistuba II (2017) A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol 3(8):1051–1058.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Scheel AH, Dietel M, Heukamp LC, Jöhrens K, Kirchner T, Reu S, Rüschoff J, Schildhaus HU, Schirmacher P, Tiemann M, Warth A, Weichert W, Fischer RN, Wolf J, Buettner R (2016) Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol 29(10):1165–1172.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Adam J, Rouquette I, Damotte D, Badoual C, Danel C, Damiola F, Penault-Llorca F, Lantuejoul S (2017) PL04a. 04: multicentric French harmonization study for PD-L1 IHC testing in NSCLC. J Thorac Oncol 12(1):S11–S12.

    Article  Google Scholar 

  29. 29.

    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishop JA, Chen L, Drake CG, Topalian SL, Pardoll DM, Pai SI (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73(6):1733–1741.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ma C, Patel K, Singhi AD, Ren B, Zhu B, Shaikh F, Sun W (2016) Programmed death-ligand 1 expression is common in gastric cancer associated with Epstein–Barr virus or microsatellite instability. Am J Surg Pathol 40(11):1496–1506.

    Article  Google Scholar 

  32. 32.

    Koh J, Go H, Keam B, Kim MY, Nam SJ, Kim TM, Lee SH, Min HS, Kim YT, Kim DW, Jeon YK, Chung DH (2015) Clinicopathologic analysis of programmed cell death-1 and programmed cell death-ligand 1 and 2 expressions in pulmonary adenocarcinoma: comparison with histology and driver oncogenic alteration status. Mod Pathol 28(9):1154–1166.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Barreta A, Sarian LO, Ferracini AC, Costa LBE, Mazzola PG, de Angelo AL et al (2019) Immunohistochemistry expression of targeted therapies biomarkers in ovarian clear cell and endometrioid carcinomas (type I) and endometriosis. Hum Pathol 85:72–81.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Crumley S, Kurnit K, Hudgens C, Fellman B, Tetzlaff MT, Broaddus R (2019) Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol 32(3):396–404.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Gargiulo P, Della Pepa C, Berardi S, Califano D, Scala S, Buonaguro L, Ciliberto G, Brauchli P, Pignata S (2016) Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: new candidates for checkpoint blockade immunotherapy? Cancer Treat Rev 48:61–68.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Longoria TC, Eskander RN (2015) Immunotherapy in endometrial cancer-an evolving therapeutic paradigm. Gynecol Oncol Res Pract 2(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Herzog T, Arguello D, Reddy S, Gatalica Z (2015) PD-1 and PD-L1 expression in 1599 gynecological malignancies—implications for immunotherapy. Gynecol Oncol 137(1):204–205

    Article  Google Scholar 

  38. 38.

    Vanderstraeten A, Luyten C, Verbist G, Tuyaerts S, Amant F (2014) Immunotherapy. Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol Immunother 63(6):545–557.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Stelloo E, Nout RA, Osse EM, Jürgenliemk-Schulz IJ, Jobsen JJ, Lutgens LC, van der Steen-Banasik EM, Nijman HW, Putter H, Bosse T, Creutzberg CL, Smit VTHBM (2016) Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer—combined analysis of the PORTEC cohorts. Clin Cancer Res 22(16):4215–4224.

    CAS  Article  Google Scholar 

  40. 40.

    Kanopienė D, Smailytė G, Vidugirienė J, Bacher J (2014) Impact of microsatellite instability on survival of endometrial cancer patients. Medicina 50(4):216–221.

    Article  PubMed  Google Scholar 

  41. 41.

    Hacking S, Jin C, Komforti M, Liang S, Nasim M (2019) MMR deficient undifferentiated/dedifferentiated endometrial carcinomas showing significant programmed death ligand-1 expression (sp 142) with potential therapeutic implications. Pathol Res Pract 215(10):152552.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Chavez JA, Wei L, Suarez AA, Parwani AV, Li Z (2019) Clinicopathologic characteristics, tumor infiltrating lymphocytes and programed cell death ligand-1 expression in 162 endometrial carcinomas with deficient mismatch repair function. Int J Gynecol Cancer 29(1):113–118.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt MV, Hermanns HM et al (2019) IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 38(1):1–15

    Article  Google Scholar 

  44. 44.

    Xu C, Hua H, Chen T, Zhang W, Song G, Zhang Z (2017) PD-L1 is correlated with p53 expression in patients with lung adenocarcinoma. Int J Clin Exp Pathol 10(11)

  45. 45.

    Tojyo I, Shintani Y, Nakanishi T, Okamoto K, Hiraishi Y, Fujita S, Enaka M, Sato F, Muragaki Y (2019) PD-L1 expression correlated with p53 expression in oral squamous cell carcinoma. Maxillofac Plast Reconstr Surg 41(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ, Deng W, Chen G, Mbofung R, Lazar AJ, Torres-Cabala CA, Cooper ZA, Chen PL, Tieu TN, Spranger S, Yu X, Bernatchez C, Forget MA, Haymaker C, Amaria R, McQuade JL, Glitza IC, Cascone T, Li HS, Kwong LN, Heffernan TP, Hu J, Bassett RL, Bosenberg MW, Woodman SE, Overwijk WW, Lizee G, Roszik J, Gajewski TF, Wargo JA, Gershenwald JE, Radvanyi L, Davies MA, Hwu P (2016) Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov 6(2):202–216.

    CAS  Article  Google Scholar 

  47. 47.

    Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RP et al (2017) Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol 30(12):1666–1676.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Sun H, Enomoto T, Fujita M, Wada H, Yoshino K, Ozaki K, Nakamura T, Murata Y (2001) Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol 115(1):32–38.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kanamori Y, Kigawa J, Itamochi H, Shimada M, Takahashi M, Kamazawa S, Sato S, Akeshima R, Terakawa N (2001) Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer Res 7(4):892–895

    CAS  PubMed  Google Scholar 

  50. 50.

    Quddus MR, Ologun BA, Sung CJ, Steinhoff MM, Lawrence WD (2009) Utility of PTEN expression of endometrial “surface epithelial changes” and underlying atypical endometrial hyperplasia. Int J Gynecol Pathol 28(5):471–476.

    Article  PubMed  Google Scholar 

  51. 51.

    Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, Wang X, Timmons CL, Hu J, Liu B, Wu X, Wang L, Wang J, Liu H (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One 8(6):e65821.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, Mischel PS, Stokoe D, Pieper RO (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Allo G, Bernardini MQ, Wu R-C, Shih I-M, Kalloger S, Pollett A, Gilks CB, Clarke BA (2014) ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol 27(2):255–261.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Li L, Li M, Jiang Z, Wang X (2019) ARID1A mutations are associated with increased immune activity in gastrointestinal cancer. Cells 8(7):678.

    CAS  Article  Google Scholar 

  55. 55.

    Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73.

    CAS  Article  Google Scholar 

  56. 56.

    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HEK, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported by Istanbul Medeniyet University Scientific Research Project fund.

Author information




G.K.: Designed the research study, contributed essential reagents or tools, performed the research, reviewed and corrected the manuscript.

T.S., Z.C.O.: Analyzed the data, wrote the paper.

A.A.: Contributed essential reagents or tools, performed the research.

W.G.M.: Reviewed and corrected the manuscript.

Corresponding author

Correspondence to Gozde Kir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kir, G., Soylemez, T., Olgun, Z.C. et al. Correlation of PD-L1 expression with immunohistochemically determined molecular profile in endometrial carcinomas. Virchows Arch (2020).

Download citation


  • Endometrial carcinoma
  • Immunohistochemistry
  • MMR
  • ARID1A
  • PTEN
  • PD-L1