Virchows Archiv

, Volume 472, Issue 3, pp 425–432 | Cite as

The diagnostic role of PTEN and ARID1A in serous effusions

  • Ben Davidson
  • Maurizio Pinamonti
  • Dolors Cuevas
  • Arild Holth
  • Pio Zeppa
  • Thomas Hager
  • Jeremias Wohlschlaeger
  • Martin Tötsch
Original Article

Abstract

The aim of this study was to analyze the diagnostic role of PTEN and ARID1A in effusion cytology. Effusions (n = 279), consisting of 226 carcinomas (70 ovarian, 64 breast, 36 lung, and 15 uterine corpus carcinomas; 41 carcinomas of other origin) and 53 malignant mesotheliomas, were analyzed for PTEN and ARID1A expression using immunohistochemistry. PTEN was preserved in 166 (59%) tumors, partially lost in 38 (14%), and absent in 75 (27%), with lower expression in malignant mesotheliomas compared to carcinomas, though not significantly (p = 0.084). ARID1A was preserved in 243 (88%) tumors, partially lost in 18 (6%), and absent in 18 (6%). The majority of tumors with absent ARID1A were ovarian carcinomas, predominantly of clear cell or low-grade serous type. Reactive mesothelial cells in carcinoma specimens were uniformly positive for both proteins. ARID1A mutation analysis showed no mutations in eight analyzed specimens negative by immunohistochemistry. Loss of PTEN and ARID1A expression is highly specific for malignancy in effusion pathology. Loss of PTEN is not informative of organ of origin, whereas absence of ARID1A should raise suspicion of an ovarian primary.

Keywords

PTEN ARID1A Effusions Immunohistochemistry Diagnosis 

Notes

Compliance with ethical standards

The study was approved by the Regional Committee for Medical Research Ethics in Norway. Permission from the local ethics committee and patient consent were obtained at all locations according to national guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Davidson B, Firat P, Michael CW (eds) (2011) Serous effusions. Springer, London, UKGoogle Scholar
  2. 2.
    Malaney P, Uversky VN, Davé V (2017) PTEN proteoforms in biology and disease. Cell Mol Life Sci 74(15):2783–2794.  https://doi.org/10.1007/s00018-017-2500-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Hodges C, Kirkland JG, Crabtree GR (2016) The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med 6(8).  https://doi.org/10.1101/cshperspect.a026930
  4. 4.
    Takeda T, Banno K, Okawa R et al (2016) ARID1A gene mutation in ovarian and endometrial cancers (review). Oncol Rep 35(2):607–613.  https://doi.org/10.3892/or.2015.4421 CrossRefPubMedGoogle Scholar
  5. 5.
    Bitler BG, Fatkhutdinov N, Zhang R (2015) Potential therapeutic targets in ARID1A-mutated cancers. Expert Opin Ther Targets 19(11):1419–1422.  https://doi.org/10.1517/14728222.2015.1062879 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gounaris I, Brenton JD (2015) Molecular pathogenesis of ovarian clear cell carcinoma. Future Oncol 11(9):1389–1405.  https://doi.org/10.2217/fon.15.45 CrossRefPubMedGoogle Scholar
  7. 7.
    Maiques O, Santacana M, Valls J, Pallares J, Mirantes C, Gatius S, da García D, Amant F, Pedersen HC, Dolcet X, Matias-Guiu X (2014) Optimal protocol for PTEN immunostaining; role of analytical and preanalytical variables in PTEN staining in normal and neoplastic endometrial, breast, and prostatic tissues. Hum Pathol 45(3):522–532.  https://doi.org/10.1016/j.humpath.2013.10.018 CrossRefPubMedGoogle Scholar
  8. 8.
    Djordjevic B, Hennessy BT, Li J, Barkoh BA, Luthra R, Mills GB, Broaddus RR (2012) Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry outperforms gene sequencing. Mod Pathol 25(5):699–708.  https://doi.org/10.1038/modpathol.2011.208 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garg K, Broaddus RR, Soslow RA, Urbauer DL, Levine DA, Djordjevic B (2012) Pathologic scoring of PTEN immunohistochemistry in endometrial carcinoma is highly reproducible. Int J Gynecol Pathol 31(1):48–56.  https://doi.org/10.1097/PGP.0b013e3182230d00 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Köbel M, Bak J, Bertelsen BI, Carpen O, Grove A, Hansen ES, Levin Jakobsen AM, Lidang M, Måsbäck A, Tolf A, Gilks CB, Carlson JW (2014) Ovarian carcinoma histotype determination is highly reproducible, and is improved through the use of immunohistochemistry. Histopathology 64(7):1004–1013.  https://doi.org/10.1111/his.12349 CrossRefPubMedGoogle Scholar
  11. 11.
    Köbel M, Kalloger SE, Lee S, Ovarian Tumor Tissue Analysis consortium et al (2013) Biomarker-based ovarian carcinoma typing: a histologic investigation in the ovarian tumor tissue analysis consortium. Cancer Epidemiol Biomark Prev 22(10):1677–1686.  https://doi.org/10.1158/1055-9965.EPI-13-0391 CrossRefGoogle Scholar
  12. 12.
    Ordóñez NG (2013) Value of PAX8, PAX2, napsin A, carbonic anhydrase IX, and claudin-4 immunostaining in distinguishing pleural epithelioid mesothelioma from metastatic renal cell carcinoma. Mod Pathol 26(8):1132–1143.  https://doi.org/10.1038/modpathol.2013.34 CrossRefPubMedGoogle Scholar
  13. 13.
    Ordóñez NG (2013) Value of PAX8, PAX2, claudin-4, and h-caldesmon immunostaining in distinguishing peritoneal epithelioid mesotheliomas from serous carcinomas. Mod Pathol 26(4):553–562.  https://doi.org/10.1038/modpathol.2012.200 CrossRefPubMedGoogle Scholar
  14. 14.
    Laury AR, Hornick JL, Perets R, Krane JF, Corson J, Drapkin R, Hirsch MS (2010) PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am J Surg Pathol 34(5):627–635.  https://doi.org/10.1097/PAS.0b013e3181da7687 PubMedGoogle Scholar
  15. 15.
    Kawai T, Tominaga S, Hiroi S, Ogata S, Nakanishi K, Kawahara K, Sonobe H, Hiroshima K (2016) Peritoneal malignant mesothelioma (PMM), and primary peritoneal serous carcinoma (PPSC) and reactive mesothelial hyperplasia (RMH) of the peritoneum. Immunohistochemical and fluorescence in situ hybridisation (FISH) analyses. J Clin Pathol 69(8):706–712.  https://doi.org/10.1136/jclinpath-2015-203211 CrossRefPubMedGoogle Scholar
  16. 16.
    Gao FF, Krasinskas AM, Chivukula M (2012) Is PAX2 a reliable marker in differentiating diffuse malignant mesotheliomas of peritoneum from serous carcinomas of müllerian origin? Appl Immunohistochem Mol Morphol 20(3):272–276.  https://doi.org/10.1097/PAI.0b013e3182366531 CrossRefPubMedGoogle Scholar
  17. 17.
    Jo VY, Cibas ES, Pinkus GS (2014) Claudin-4 immunohistochemistry is highly effective in distinguishing adenocarcinoma from malignant mesothelioma in effusion cytology. Cancer Cytopathol 122(4):299–306.  https://doi.org/10.1002/cncy.21392 CrossRefPubMedGoogle Scholar
  18. 18.
    Andrici J, Jung J, Sheen A, D’Urso L, Sioson L, Pickett J, Parkhill TR, Verdonk B, Wardell KL, Singh A, Clarkson A, Watson N, Toon CW, Gill AJ (2016) Loss of BAP1 expression is very rare in peritoneal and gynecologic serous adenocarcinomas and can be useful in the differential diagnosis with abdominal mesothelioma. Hum Pathol 51:9–15.  https://doi.org/10.1016/j.humpath.2015.12.012 CrossRefPubMedGoogle Scholar
  19. 19.
    Facchetti F, Lonardi S, Gentili F, Bercich L, Falchetti M, Tardanico R, Baronchelli C, Lucini L, Santin A, Murer B (2007) Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch 451(3):669–680.  https://doi.org/10.1007/s00428-007-0448-x CrossRefPubMedGoogle Scholar
  20. 20.
    Kleinberg L, Holth A, Fridman E, Schwartz I, Shih IM, Davidson B (2007) The diagnostic role of claudins in serous effusions. Am J Clin Pathol 127(6):928–937.  https://doi.org/10.1309/V025QRN3R9CJGNPX CrossRefPubMedGoogle Scholar
  21. 21.
    Davidson B, Baekelandt M, Shih IM (2007) MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol 35(12):756–760.  https://doi.org/10.1002/dc.20771 CrossRefPubMedGoogle Scholar
  22. 22.
    Davidson B, Stavnes HT, Hellesylt E, Hager T, Zeppa P, Pinamonti M, Wohlschlaeger J (2016) MMP-7 is a highly specific negative marker for benign and malignant mesothelial cells in serous effusions. Hum Pathol 47(1):104–108.  https://doi.org/10.1016/j.humpath.2015.08.020 CrossRefPubMedGoogle Scholar
  23. 23.
    Davidson B (2016) CD24 is highly useful in differentiating high-grade serous carcinoma from benign and malignant mesothelial cells. Hum Pathol 58:123–127.  https://doi.org/10.1016/j.humpath.2016.08.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Yuan Y, Nymoen DA, Tuft Stavnes H et al (2009) Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol 33(11):1673–1682.  https://doi.org/10.1097/PAS.0b013e3181b6bde3 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Davidson B (2014) Hepatocyte nuclear factor-1β is not a specific marker of clear cell carcinoma in serous effusions. Cancer Cytopathol 122(2):153–158.  https://doi.org/10.1002/cncy.21353 CrossRefPubMedGoogle Scholar
  26. 26.
    Balbás-Martínez C, Rodríguez-Pinilla M, Casanova A (2013) ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One 8(5):e62483.  https://doi.org/10.1371/journal.pone.0062483 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Morel D, Almouzni G, Soria JC, Postel-Vinay S (2017) Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Ann Oncol 28(2):254–269.  https://doi.org/10.1093/annonc/mdw552 PubMedGoogle Scholar
  28. 28.
    Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, Badham N, Rafiq R, Brough R, Gulati A, Ryan CJ, Francis J, Vermulen PB, Reynolds AR, Reaper PM, Pollard JR, Ashworth A, Lord CJ (2016) ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun 7:13837.  https://doi.org/10.1038/ncomms13837 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kwan SY, Cheng X, Tsang YT et al (2016) Loss of ARID1A expression leads to sensitivity to ROS-inducing agent elesclomol in gynecologic cancer cells. Oncotarget 7(35):56933–56943.  10.18632/oncotarget.10921 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller RE, Brough R, Bajrami I, Williamson CT, McDade S, Campbell J, Kigozi A, Rafiq R, Pemberton H, Natrajan R, Joel J, Astley H, Mahoney C, Moore JD, Torrance C, Gordan JD, Webber JT, Levin RS, Shokat KM, Bandyopadhyay S, Lord CJ, Ashworth A (2016) Synthetic lethal targeting of ARID1A-mutant ovarian clear cell tumors with dasatinib. Mol Cancer Ther 15(7):1472–1484.  https://doi.org/10.1158/1535-7163.MCT-15-0554 CrossRefPubMedGoogle Scholar
  31. 31.
    Berns K, Sonnenblick A, Gennissen A, Brohee S, Hijmans EM, Evers B, Fumagalli D, Desmedt C, Loibl S, Denkert C, Neven P, Guo W, Zhang F, Knijnenburg TA, Bosse T, van der Heijden MS, Hindriksen S, Nijkamp W, Wessels LFA, Joensuu H, Mills GB, Beijersbergen RL, Sotiriou C, Bernards R (2016) Loss of ARID1A activates ANXA1, which serves as a predictive biomarker for trastuzumab resistance. Clin Cancer Res 22(21):5238–5248.  https://doi.org/10.1158/1078-0432.CCR-15-2996 CrossRefPubMedGoogle Scholar
  32. 32.
    Voss MH, Molina AM, Chen YB et al (2017) Phase II trial and correlative genomic analysis of everolimus plus bevacizumab in advanced non-clear cell renal cell carcinoma. Clin Oncol 2016 Sep 6. Pii: JCO679084 [Epub ahead of print]Google Scholar
  33. 33.
    Cowell JK, Qin H, Hu T, Wu Q, Bhole A, Ren M (2017) Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas. Int J Cancer 141(9):1822–1829.  https://doi.org/10.1002/ijc.30848 CrossRefPubMedGoogle Scholar
  34. 34.
    Koo DH, Lee HJ, Ahn JH, Yoon DH, Kim SB, Gong G, Son BH, Ahn SH, Jung KH (2015) Tau and PTEN status as predictive markers for response to trastuzumab and paclitaxel in patients with HER2-positive breast cancer. Tumour Biol 36(8):5865–5871.  https://doi.org/10.1007/s13277-015-3258-9 CrossRefPubMedGoogle Scholar
  35. 35.
    Loibl S, Darb-Esfahani S, Huober J, Klimowicz A, Furlanetto J, Lederer B, Hartmann A, Eidtmann H, Pfitzner B, Fasching PA, Tiemann K, Jackisch C, Mehta K, von Minckwitz G, Untch M, Denkert C (2016) Integrated analysis of PTEN and p4EBP1 protein expression as predictors for pCR in HER2-positive breast cancer. Clin Cancer Res 22(11):2675–2683.  https://doi.org/10.1158/1078-0432.CCR-15-0965 CrossRefPubMedGoogle Scholar
  36. 36.
    Deguchi Y, Okabe H, Oshima N, Hisamori S, Minamiguchi S, Muto M, Sakai Y (2017) PTEN loss is associated with a poor response to trastuzumab in HER2-overexpressing gastroesophageal adenocarcinoma. Gastric Cancer 20(3):416–427.  https://doi.org/10.1007/s10120-016-0627-z CrossRefPubMedGoogle Scholar
  37. 37.
    George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, Hammerman P, Freeman GJ, Wu CJ, Ott PA, Wong KK, van Allen EM (2017) Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine Leiomyosarcoma. Immunity 46(2):197–204.  https://doi.org/10.1016/j.immuni.2017.02.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pathology, Norwegian Radium HospitalOslo University HospitalOsloNorway
  2. 2.Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
  3. 3.Unit of Pathology, Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
  4. 4.Hospital Universitari Arnau de Vilanova de LleidaIRB LleidaLleidaSpain
  5. 5.Department of PathologyUniversity of SalernoSalernoItaly
  6. 6.Department of PathologyUniversity Hospital EssenEssenGermany
  7. 7.Institute of CytologyMedical University of GrazGrazAustria

Personalised recommendations