Advertisement

Virchows Archiv

, Volume 471, Issue 1, pp 31–47 | Cite as

Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ß-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift

  • Alessandra Fabbri
  • Mara Cossa
  • Angelica Sonzogni
  • Paolo Bidoli
  • Stefania Canova
  • Diego Cortinovis
  • Maria Ida Abbate
  • Fiorella Calabrese
  • Nazarena Nannini
  • Francesca Lunardi
  • Giulio Rossi
  • Stefano La Rosa
  • Carlo Capella
  • Elena Tamborini
  • Federica Perrone
  • Adele Busico
  • Iolanda Capone
  • Barbara Valeri
  • Ugo Pastorino
  • Adriana Albini
  • Giuseppe Pelosi
Original Article

Abstract

We herein report an uncommon association of intimately admixed atypical carcinoid (AC) and large cell neuroendocrine (NE) carcinoma (LCNEC) of the thymus, occurring in two 20- and 39-year-old Caucasian males. Both tumors were treated by maximal thymectomy. The younger patient presented with a synchronous lesion and died of disease after 9 months, while the other patient was associated with a recurrent ectopic adrenocorticotropic hormone Cushing’s syndrome and is alive with disease at the 2-year follow-up. MEN1 syndrome was excluded in either case. Immunohistochemically, disarrayed cytoplasmic and nuclear ß-catenin expression was seen alongside an intra-tumor Ki-67 antigen labeling index (LI) ranging from 2 to 80% in the younger patient’s tumor and from 3 to 45% in the other. Both exhibited upregulated cyclin D1 and retinoblastoma, while vimentin was overexpressed in the recurrent LCNEC only. Next-generation sequencing revealed CTNNB1, TP53, and JAK3 mutations in the synchronous tumor and CTNNB1 mutation alone in the metachronous tumor (the latter with the same mutation as the first tumor of 17 years prior). None of the 23 T-NET controls exhibited this hallmarking triple alteration (p = 0.003). These findings suggested that LCNEC components developed from pre-existing CTNNB1-mutated AC upon loss-of-function TP53 and gain-of-function JAK3 mutations in one case and an epithelial-mesenchymal transition upon vimentin overexpression in the other case. Both tumors maintained intact cyclin D1–retinoblastoma machinery. Our report challenges the concept of secondary LCNEC as an entity that develops from pre-existing AC as a result of tumor progression, suggesting a paradigm shift to the current pathogenesis of NET.

Keywords

Thymus ß-catenin Large cell neuroendocrine carcinoma Atypical carcinoid Next-generation sequencing Immunohistochemistry 

Notes

Acknowledgements

The paper has been professionally proofread by PRS (Proof-Reading-Service.com Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City, Herts SG6 1GJ, United Kingdom).

This work is dedicated to the memory of Carlotta, an extraordinarily lively girl who untimely died of cancer in the prime of her life.

Compliance with ethical standards

The study was approved by the independent ethics committee of the National Tumor Institute IRCCS Foundation, Milan, Italy (accession number INT-17/16). All patients gave their written consent for diagnosis and research activities when they were admitted to the hospital.

Funding

This work was supported by an unrestricted grant from Novartis Farma Italia, Origgio (VA), Italy (no accession number). The Funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, which are responsibilities of the authors only.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

428_2017_2130_MOESM1_ESM.docx (93 kb)
ESM 1 Antibody panel used in the study divided by markers (DOCX 92 kb)
428_2017_2130_Fig4_ESM.jpg (53 kb)
ESM 2

Representative p53 immunohistochemistry images of the no. 2 patient’s tumors. The 1997 tumor featuring atypical carcinoid exhibited only focal and faint nuclear decoration for p53 (A), whilst the large cell neuroendocrine carcinoma component showed by far higher p53 nuclear accumulation in keeping with the presence of the relevant gene mutation (B). (JPEG 53 kb)

428_2017_2130_MOESM2_ESM.tif (10.1 mb)
High-resolution image (TIFF 10356 kb)

References

  1. 1.
    Ruffini E, Detterbeck F, Van Raemdonck D, Rocco G, Thomas P, Weder W, Brunelli A, Evangelista A, Venuta F, European Association of Thoracic Surgeons Thymic Working G (2014) Tumours of the thymus: a cohort study of prognostic factors from the European Society of Thoracic Surgeons database. Eur J Cardiothorac Surg 46:361–368CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Filosso PL, Yao X, Ruffini E, Ahmad U, Antonicelli A, Huang J, Guerrera F, Venuta F, van Raemdonck D, Travis W, Lucchi M, Rimner A, Thomas P, Weder W, Rocco G, Detterbeck F, Korst R (2016) Comparison of outcomes between neuroendocrine thymic tumours and other subtypes of thymic carcinomas: a joint analysis of the European Society of Thoracic Surgeons and the International Thymic Malignancy Interest Group. Eur J Cardiothorac SurgGoogle Scholar
  3. 3.
    Moran CA, Suster S (2000) Primary neuroendocrine carcinoma (thymic carcinoid) of the thymus with prominent oncocytic features: a clinicopathologic study of 22 cases. Mod Pathol 13:489–494CrossRefPubMedGoogle Scholar
  4. 4.
    Travis W, Brambilla E, Burke A, Marx A, Nicholson A (2015) WHO classification of tumours of the lung, pleura, thymus and heart, Fourth edn. IARC, LyonGoogle Scholar
  5. 5.
    Marx A, Chan JK, Coindre JM, Detterbeck F, Girard N, Harris NL, Jaffe ES, Kurrer MO, Marom EM, Moreira AL, Mukai K, Orazi A, Strobel P (2015) The 2015 World Health Organization classification of tumors of the thymus: continuity and changes. J Thorac Oncol 10:1383–1395CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ahn S, Lee JJ, Ha SY, Sung CO, Kim J, Han J (2012) Clinicopathological analysis of 21 thymic neuroendocrine tumors. Korean J Pathol 46:221–225CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cardillo G, Rea F, Lucchi M, Paul MA, Margaritora S, Carleo F, Marulli G, Mussi A, Granone P, Graziano P (2012) Primary neuroendocrine tumors of the thymus: a multicenter experience of 35 patients. Ann Thorac Surg 94:241–245 discussion 245-6CrossRefPubMedGoogle Scholar
  8. 8.
    Fukai I, Masaoka A, Fujii Y, Yamakawa Y, Yokoyama T, Murase T, Eimoto T (1999) Thymic neuroendocrine tumor (thymic carcinoid): a clinicopathologic study in 15 patients. Ann Thorac Surg 67:208–211CrossRefPubMedGoogle Scholar
  9. 9.
    Kamp K, Alwani RA, Korpershoek E, Franssen GJ, de Herder WW, Feelders RA (2016) Prevalence and clinical features of the ectopic ACTH syndrome in patients with gastroenteropancreatic and thoracic neuroendocrine tumors. Eur J Endocrinol 174:271–280CrossRefPubMedGoogle Scholar
  10. 10.
    Liu RX, Wang WQ, Ye L, Bi YF, Fang H, Cui B, Zhou WW, Dai M, Zhang J, Li XY, Ning G (2010) p21-activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocrine 38:38–47CrossRefPubMedGoogle Scholar
  11. 11.
    Thomas de Montpreville V, Ghigna MR, Lacroix L, Besse B, Broet P, Dartevelle P, Fadel E, Dorfmuller P (2013) Thymic carcinomas: clinicopathologic study of 37 cases from a single institution. Virchows Arch 462:307–313CrossRefPubMedGoogle Scholar
  12. 12.
    Ferolla P, Falchetti A, Filosso P, Tomassetti P, Tamburrano G, Avenia N, Daddi G, Puma F, Ribacchi R, Santeusanio F, Angeletti G, Brandi ML (2005) Thymic neuroendocrine carcinoma (carcinoid) in multiple endocrine neoplasia type 1 syndrome: the Italian series. J Clin Endocrinol Metab 90:2603–2609CrossRefPubMedGoogle Scholar
  13. 13.
    Teh BT (1998) Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 243:501–504CrossRefPubMedGoogle Scholar
  14. 14.
    Thevenon J, Bourredjem A, Faivre L, Cardot-Bauters C, Calender A, Le Bras M, Giraud S, Niccoli P, Odou MF, Borson-Chazot F, Barlier A, Lombard-Bohas C, Clauser E, Tabarin A, Pasmant E, Chabre O, Castermans E, Ruszniewski P, Bertherat J, Delemer B, Christin-Maitre S, Beckers A, Guilhem I, Rohmer V, Goichot B, Caron P, Baudin E, Chanson P, Groussin L, Du Boullay H, Weryha G, Lecomte P, Schillo F, Bihan H, Archambeaud F, Kerlan V, Bourcigaux N, Kuhn JM, Verges B, Rodier M, Renard M, Sadoul JL, Binquet C, Goudet P (2015) Unraveling the intrafamilial correlations and heritability of tumor types in MEN1: a Groupe d'etude des Tumeurs Endocrines study. Eur J Endocrinol 173:819–826CrossRefPubMedGoogle Scholar
  15. 15.
    Goudet P, Murat A, Cardot-Bauters C, Emy P, Baudin E, du Boullay CH, Chapuis Y, Kraimps JL, Sadoul JL, Tabarin A, Verges B, Carnaille B, Niccoli-Sire P, Costa A, Calender A, network GTE (2009) Thymic neuroendocrine tumors in multiple endocrine neoplasia type 1: a comparative study on 21 cases among a series of 761 MEN1 from the GTE (Groupe des Tumeurs Endocrines). World J Surg 33:1197–1207CrossRefPubMedGoogle Scholar
  16. 16.
    Pan CC, Jong YJ, Chen YJ (2005) Comparative genomic hybridization analysis of thymic neuroendocrine tumors. Mod Pathol 18:358–364CrossRefPubMedGoogle Scholar
  17. 17.
    Rieker RJ, Aulmann S, Penzel R, Schnabel PA, Blaeker H, Esposito I, Morresi-Hauf A, Otto HF, Hecker E, Dienemann H, Schirmacher P, Mechtersheimer G (2005) Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Lett 223:169–174CrossRefPubMedGoogle Scholar
  18. 18.
    Strobel P, Zettl A, Shilo K, Chuang WY, Nicholson AG, Matsuno Y, Gal A, Laeng RH, Engel P, Capella C, Marino M, Chan JK, Rosenwald A, Travis W, Franks TJ, Ellenberger D, Schaefer IM, Marx A (2014) Tumor genetics and survival of thymic neuroendocrine neoplasms: a multi-institutional clinicopathologic study. Genes Chromosomes Cancer 53:738–749CrossRefPubMedGoogle Scholar
  19. 19.
    Goto K, Kodama T, Matsuno Y, Yokose T, Asamura H, Kamiya N, Shimosato Y (2001) Clinicopathologic and DNA cytometric analysis of carcinoid tumors of the thymus. Mod Pathol 14:985–994CrossRefPubMedGoogle Scholar
  20. 20.
    de Leeuw FE, Jansen GH, Batanero E, van Wichen DF, Huber J, Schuurman HJ (1992) The neural and neuro-endocrine component of the human thymus. I. Nerve-like structures. Brain Behav Immun 6:234–248CrossRefPubMedGoogle Scholar
  21. 21.
    Batanero E, de Leeuw FE, Jansen GH, van Wichen DF, Huber J, Schuurman HJ (1992) The neural and neuro-endocrine component of the human thymus. II. Hormone immunoreactivity. Brain Behav Immun 6:249–264CrossRefPubMedGoogle Scholar
  22. 22.
    Moll UM, Lane BL, Robert F, Geenen V, Legros JJ (1988) The neuroendocrine thymus. Abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry 89:385–390CrossRefPubMedGoogle Scholar
  23. 23.
    Rosai J, Higa E (1972) Mediastinal endocrine neoplasm, of probable thymic origin, related to carcinoid tumor. Clinicopathologic study of 8 cases. Cancer 29:1061–1074CrossRefPubMedGoogle Scholar
  24. 24.
    Kvell K, Fejes AV, Parnell SM, Pongracz JE (2014) Active Wnt/beta-catenin signaling is required for embryonic thymic epithelial development and functionality ex vivo. Immunobiology 219:644–652CrossRefPubMedGoogle Scholar
  25. 25.
    Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, Na KJ, Jeker LT, Hafen K, Tsukamoto N, Amagai T, Taketo MM, Krenger W, Hollander GA (2009) Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. J Immunol 182:2997–3007CrossRefPubMedGoogle Scholar
  26. 26.
    Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E, Khazaie K (2005) Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol 6:800–809CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wick MR, Scheithauer BW (1982) Oat-cell carcinoma of the thymus. Cancer 49:1652–1657CrossRefPubMedGoogle Scholar
  28. 28.
    Moran CA, Suster S (2000) Thymic neuroendocrine carcinomas with combined features ranging from well-differentiated (carcinoid) to small cell carcinoma. A clinicopathologic and immunohistochemical study of 11 cases. Am J Clin Pathol 113:345–350CrossRefPubMedGoogle Scholar
  29. 29.
    Scholz DA, Bahn RC (1959) Thymic tumors associated with Cushing's syndrome: review of three cases. Proc Staff Meet Mayo Clin 34:433–441PubMedGoogle Scholar
  30. 30.
    Sensaki K, Aida S, Takagi K, Shibata H, Ogata T, Tanaka S, Tamai S (1993) Coexisting undifferentiated thymic carcinoma and thymic carcinoid tumor. Respiration 60:247–249CrossRefPubMedGoogle Scholar
  31. 31.
    Kuo TT (1994) Carcinoid tumor of the thymus with divergent sarcomatoid differentiation: report of a case with histogenetic consideration. Hum Pathol 25:319–323CrossRefPubMedGoogle Scholar
  32. 32.
    Paties C, Zangrandi A, Vassallo G, Rindi G, Solcia E (1991) Multidirectional carcinoma of the thymus with neuroendocrine and sarcomatoid components and carcinoid syndrome. Pathol Res Pract 187:170–177CrossRefPubMedGoogle Scholar
  33. 33.
    Pelosi G, Rindi G, Travis WD, Papotti M (2014) Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol 9:273–284CrossRefPubMedGoogle Scholar
  34. 34.
    Pelosi G, Scarpa A, Puppa G, Veronesi G, Spaggiari L, Pasini F, Maisonneuve P, Iannucci A, Arrigoni G, Viale G (2005) Alteration of the E-cadherin/beta-catenin cell adhesion system is common in pulmonary neuroendocrine tumors and is an independent predictor of lymph node metastasis in atypical carcinoids. Cancer 103:1154–1164CrossRefPubMedGoogle Scholar
  35. 35.
    Pelosi G, Fabbri A, Papotti M, Rossi G, Cavazza A, Righi L, Tamborini E, Perrone F, Settanni G, Busico A, Testi MA, Maisonneuve P, De Braud F, Garassino M, Valeri B, Sonzogni A, Pastorino U (2015) Dissecting pulmonary large-cell carcinoma by targeted next generation sequencing of several cancer genes pushes genotypic-phenotypic correlations to emerge. J Thorac Oncol 10:1560–1569CrossRefPubMedGoogle Scholar
  36. 36.
    Pelosi G, Gasparini P, Cavazza A, Rossi G, Graziano P, Barbareschi M, Perrone F, Barberis M, Takagi M, Kunimura T, Yamada T, Nakatani Y, Pastorino U, Scanagatta P, Sozzi G, Garassino M, De Braud F, Papotti M (2012) Multiparametric molecular characterization of pulmonary sarcomatoid carcinoma reveals a nonrandom amplification of anaplastic lymphoma kinase (ALK) gene. Lung Cancer 77:507–514CrossRefPubMedGoogle Scholar
  37. 37.
    Pelosi G, Pellegrinelli A, Fabbri A, Tamborini E, Perrone F, Settanni G, Busico A, Picciani B, Testi MA, Militti L (2016) Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules. Virchows Arch:1–12Google Scholar
  38. 38.
    Pelosi G, Perrone F, Tamborini E, Fabbri A, Testi MA, Busico A, Settanni G, Picciani B, Bovio E, Sonzogni A, Valeri B, Garassino M, De Braud F, Pastorino U (2016) Doing more with less: fluorescence in situ hybridization and gene sequencing assays can be reliably performed on archival stained tumor tissue sections. Virchows Arch 468:451–461CrossRefPubMedGoogle Scholar
  39. 39.
    Pelosi G, Bimbatti M, Fabbri A, P B, S C, U P (2015) Thymic neuroendocrine neoplasms (T-NENs) with CTNNB1 (beta-catenin) gene mutation show components of well-differentiated tumor and poor-differentiated carcinoma, challenging the concept of secondary high-grade neuroendocrine carcinoma (#1956). Mod Pathol 28(Suppl 2):487AGoogle Scholar
  40. 40.
    Swarts DR, Ramaekers FC, Speel EJ (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826:255–271PubMedGoogle Scholar
  41. 41.
    Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretic L, Seidel D, Zander T, Leenders F, George J, Muller C, Dahmen I, Pinther B, Bosco G, Konrad K, Altmuller J, Nurnberg P, Achter V, Lang U, Schneider PM, Bogus M, Soltermann A, Brustugun OT, Helland A, Solberg S, Lund-Iversen M, Ansen S, Stoelben E, Wright GM, Russell P, Wainer Z, Solomon B, Field JK, Hyde R, Davies MP, Heukamp LC, Petersen I, Perner S, Lovly CM, Cappuzzo F, Travis WD, Wolf J, Vingron M, Brambilla E, Haas SA, Buettner R, Thomas RK (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rekhtman N, Pietanza MC, Hellmann MD, Naidoo J, Arora A, Won H, Halpenny DF, Wang H, Tian SK, Litvak AM, Paik PK, Drilon A, Socci N, Poirier JT, Shen R, Berger MF, Moreira AL, Travis WD, Rudin CM, Ladanyi M (2016) Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res 22:3618–3629Google Scholar
  43. 43.
    George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G, Muller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Putzer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmuller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castanos-Velez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Kohler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansen S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nurnberg P, Reinhardt C, Perner S, Heukamp L, Buttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Simbolo M, Mafficini A, Sikora K, Fassan M, Barbi S, Corbo V, Mastracci L, Rusev B, Grillo F, Vicentini C, Ferrara R, Pilotto S, Davini F, Pelosi G, Lawlor R, Chilosi M, Tortora G, Bria E, Fontanini G, Volante M, Scarpa A (2016) Lung neuroendocrine tumours: deep sequencing of the four WHO histotypes reveals chromatin remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 241:488–500Google Scholar
  45. 45.
    Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J, Chen K, Walker J, McDonald S, Bose R, Ornitz D, Xiong D, You M, Dooling DJ, Watson M, Mardis ER, Wilson RK (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121–1134CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Iwakawa R, Takenaka M, Kohno T, Shimada Y, Totoki Y, Shibata T, Tsuta K, Nishikawa R, Noguchi M, Sato-Otsubo A, Ogawa S, Yokota J (2013) Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Genes Chromosomes Cancer 52:802–816CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Muller C, Di Cerbo V, Schildhaus HU, Altmuller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Bohm D, Ansen S, Gabler F, Wilkening I, Heynck S, Heuckmann JM, Lu X, Carter SL, Cibulskis K, Banerji S, Getz G, Park KS, Rauh D, Grutter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella LA, Fazio VM, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman DA, Snijders PJ, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun OT, Lund-Iversen M, Sanger J, Clement JH, Soltermann A, Moch H, Weder W, Solomon B, Soria JC, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider PM, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Buttner R, Wolf J, Nurnberg P, Perner S, Heukamp LC, Brindle PK, Haas S, Thomas RK (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Basturk O, Tang L, Hruban RH, Adsay V, Yang Z, Krasinskas AM, Vakiani E, La Rosa S, Jang KT, Frankel WL, Liu X, Zhang L, Giordano TJ, Bellizzi AM, Chen JH, Shi C, Allen P, Reidy DL, Wolfgang CL, Saka B, Rezaee N, Deshpande V, Klimstra DS (2014) Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol 38:437–447Google Scholar
  49. 49.
    Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, Krasinskas AM, Jang KT, Frankel WL, Balci S, Sigel C, Klimstra DS (2015) The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 39:683–690CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tang LH, Basturk O, Sue JJ, Klimstra DS (2016) A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol 40:1192–2202Google Scholar
  51. 51.
    Tang LH, Untch BR, Reidy DL, O'Reilly E, Dhall D, Jih L, Basturk O, Allen PJ, Klimstra DS (2016) Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res 22:1011–1017CrossRefPubMedGoogle Scholar
  52. 52.
    Vollbrecht C, Werner R, Walter RF, Christoph DC, Heukamp LC, Peifer M, Hirsch B, Burbat L, Mairinger T, Schmid KW, Wohlschlaeger J, Mairinger FD (2015) Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group. Br J Cancer 113:1704–1711CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Debelenko LV, Swalwell JI, Kelley MJ, Brambilla E, Manickam P, Baibakov G, Agarwal SK, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Travis WD, Emmert-Buck MR (2000) MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosomes Cancer 28:58–65CrossRefPubMedGoogle Scholar
  54. 54.
    Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848CrossRefPubMedGoogle Scholar
  55. 55.
    Ohgaki H, Burger P, Kleihues P (2014) Definition of primary and secondary glioblastoma–response. Clin Cancer Res 20:2013CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jiang X, Cao Y, Li F, Su Y, Li Y, Peng Y, Cheng Y, Zhang C, Wang W, Ning G (2014) Targeting beta-catenin signaling for therapeutic intervention in MEN1-deficient pancreatic neuroendocrine tumours. Nat Commun 5:5809CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kim JT, Li J, Jang ER, Gulhati P, Rychahou PG, Napier DL, Wang C, Weiss HL, Lee EY, Anthony L, Townsend CM Jr, Liu C, Evers BM (2013) Deregulation of Wnt/beta-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors. Carcinogenesis 34:953–961CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kobayashi Y, Tokuchi Y, Hashimoto T, Hayashi M, Nishimura H, Ishikawa Y, Nakagawa K, Sato Y, Takahashi A, Tsuchiya E (2004) Molecular markers for reinforcement of histological subclassification of neuroendocrine lung tumors. Cancer Sci 95:334–341CrossRefPubMedGoogle Scholar
  59. 59.
    Pelosi G, Scarpa A, Veronesi G, Spaggiari L, Del Curto B, Moore PS, Maisonneuve P, Sonzogni A, Masullo M, Viale G (2005) A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear beta-catenin immunoreactivity, independent of EGFR and HER-2 gene amplification or expression. Virchows Arch 447:969–977CrossRefPubMedGoogle Scholar
  60. 60.
    Su MC, Wang CC, Chen CC, Hu RH, Wang TH, Kao HL, Jeng YM, Yuan RH (2006) Nuclear translocation of beta-catenin protein but absence of beta-catenin and APC mutation in gastrointestinal carcinoid tumor. Ann Surg Oncol 13:1604–1609CrossRefPubMedGoogle Scholar
  61. 61.
    Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW, Lloyd RV (2001) Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol 12:125–136CrossRefPubMedGoogle Scholar
  62. 62.
    Park C, Ha SY, Kim ST, Kim HC, Heo JS, Park YS, Lauwers G, Lee J, Kim KM (2016) Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors. Oncotarget 7:4024–4035PubMedGoogle Scholar
  63. 63.
    Vijayvergia N, Boland PM, Handorf E, Gustafson KS, Gong Y, Cooper HS, Sheriff F, Astsaturov I, Cohen SJ, Engstrom PF (2016) Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study. Br J Cancer 115:564–570Google Scholar
  64. 64.
    Rinner B, Galle B, Trajanoski S, Fischer C, Hatz M, Maierhofer T, Michelitsch G, Moinfar F, Stelzer I, Pfragner R, Guelly C (2012) Molecular evidence for the bi-clonal origin of neuroendocrine tumor derived metastases. BMC Genomics 13:594CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gounari F, Aifantis I, Khazaie K, Hoeflinger S, Harada N, Taketo MM, von Boehmer H (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2:863–869CrossRefPubMedGoogle Scholar
  66. 66.
    Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM (2003) Deletion of beta-catenin impairs T cell development. Nat Immunol 4:1177–1182CrossRefPubMedGoogle Scholar
  67. 67.
    Hossain MZ, Yu Q, Xu M, Sen JM (2008) ICAT expression disrupts beta-catenin-TCF interactions and impairs survival of thymocytes and activated mature T cells. Int Immunol 20:925–935CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yu Q, Sen JM (2007) Beta-catenin regulates positive selection of thymocytes but not lineage commitment. J Immunol 178:5028–5034CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Thakur R, Mishra DP (2013) Pharmacological modulation of beta-catenin and its applications in cancer therapy. J Cell Mol Med 17:449–456CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205CrossRefPubMedGoogle Scholar
  72. 72.
    van de Wetering M, de Lau W, Clevers H (2002) WNT signaling and lymphocyte development. Cell 109(Suppl):S13–S19CrossRefPubMedGoogle Scholar
  73. 73.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, Li X, Ning G (2009) Nuclear-cytoplasmic shuttling of menin regulates nuclear translocation of {beta}-catenin. Mol Cell Biol 29:5477–5487CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847CrossRefPubMedGoogle Scholar
  76. 76.
    Suarez MI, Uribe D, Jaramillo CM, Osorio G, Perez JC, Lopez R, Hoyos S, Hainaut P, Pineau P, Navas MC (2015) Wnt/beta-catenin signaling pathway in hepatocellular carcinomas cases from Colombia. Ann Hepatol 14:64–74PubMedGoogle Scholar
  77. 77.
    Ciarlo M, Benelli R, Barbieri O, Minghelli S, Barboro P, Balbi C, Ferrari N (2012) Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int J Cancer 131:582–590CrossRefPubMedGoogle Scholar
  78. 78.
    Li C, Li A, Li M, Xing Y, Chen H, Hu L, Tiozzo C, Anderson S, Taketo MM, Minoo P (2009) Stabilized beta-catenin in lung epithelial cells changes cell fate and leads to tracheal and bronchial polyposis. Dev Biol 334:97–108CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Wang Y, Giel-Moloney M, Rindi G, Leiter AB (2007) Enteroendocrine precursors differentiate independently of Wnt and form serotonin expressing adenomas in response to active beta-catenin. Proc Natl Acad Sci U S A 104:11328–11333CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mehta V, Schmitz CT, Keil KP, Joshi PS, Abler LL, Lin TM, Taketo MM, Sun X, Vezina CM (2013) Beta-catenin (CTNNB1) induces Bmp expression in urogenital sinus epithelium and participates in prostatic bud initiation and patterning. Dev Biol 376:125–135CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhang Y, Yeh LK, Zhang S, Call M, Yuan Y, Yasunaga M, Kao WW, Liu CY (2015) Wnt/beta-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development 142:3383–3393CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ucar A, Ucar O, Klug P, Matt S, Brunk F, Hofmann TG, Kyewski B (2014) Adult thymus contains FoxN1(-) epithelial stem cells that are bipotent for medullary and cortical thymic epithelial lineages. Immunity 41:257–269CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chilosi M, Zamo A, Brighenti A, Malpeli G, Montagna L, Piccoli P, Pedron S, Lestani M, Inghirami G, Scarpa A, Doglioni C, Menestrina F (2003) Constitutive expression of DeltaN-p63alpha isoform in human thymus and thymic epithelial tumours. Virchows Arch 443:175–183CrossRefPubMedGoogle Scholar
  84. 84.
    Dotto J, Pelosi G, Rosai J (2007) Expression of p63 in thymomas and normal thymus. Am J Clin Pathol 127:415–420CrossRefPubMedGoogle Scholar
  85. 85.
    Hishima T, Fukayama M, Hayashi Y, Fujii T, Arai K, Shiozawa Y, Funata N, Koike M (1998) Neuroendocrine differentiation in thymic epithelial tumors with special reference to thymic carcinoma and atypical thymoma. Hum Pathol 29:330–338CrossRefPubMedGoogle Scholar
  86. 86.
    Lauriola L, Erlandson RA, Rosai J (1998) Neuroendocrine differentiation is a common feature of thymic carcinoma. Am J Surg Pathol 22:1059–1066CrossRefPubMedGoogle Scholar
  87. 87.
    Marx A, Wilisch A, Schultz A, Greiner A, Magi B, Pallini V, Schalke B, Toyka K, Nix W, Kirchner T, Muller-Hermelink HK (1996) Expression of neurofilaments and of a titin epitope in thymic epithelial tumors. Implications for the pathogenesis of myasthenia gravis. Am J Pathol 148:1839–1850PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lauriola L, Maggiano N, Larocca LM, Ranelletti FO, Ricci R, Piantelli M, Capelli A (1990) Cells immunoreactive for neuropeptide in human thymomas. J Clin Pathol 43:829–832CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lauriola L, Maggiano N, Serra FG, Nori S, Tardio ML, Capelli A, Piantelli M, Ranelletti FO (1997) Immunohistochemical and in situ hybridization detection of growth-hormone-producing cells in human thymoma. Am J Pathol 151:55–61PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hishima T, Fukayama M, Hayashi Y, Fujii T, Arai K, Shiozawa Y, Funata N, Koike M (1997) Neuroendocrine differentiation in thymic epithelial tumors. Immunohistochemical studies. In: Marx A, Müller-Hermelink H (eds) Epithelial tumors of the thymus. Pathology, biology, treatment. Spinger Science + Business Media, LLC, New York, pp 67–73CrossRefGoogle Scholar
  91. 91.
    Moreira AL, Gonen M, Rekhtman N, Downey RJ (2010) Progenitor stem cell marker expression by pulmonary carcinomas. Mod Pathol 23:889–895CrossRefPubMedGoogle Scholar
  92. 92.
    Pelosi G, Masullo M, Leon ME, Veronesi G, Spaggiari L, Pasini F, Sonzogni A, Iannucci A, Bresaola E, Viale G (2004) CD117 immunoreactivity in high-grade neuroendocrine tumors of the lung: a comparative study of 39 large-cell neuroendocrine carcinomas and 27 surgically resected small-cell carcinomas. Virchows Arch 445:449–455CrossRefPubMedGoogle Scholar
  93. 93.
    Ivaska J (2011) Vimentin: central hub in EMT induction? Small Gtpases 2:51–53CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Galvan JA, Astudillo A, Vallina A, Crespo G, Folgueras MV, Gonzalez MV (2014) Prognostic and diagnostic value of epithelial to mesenchymal transition markers in pulmonary neuroendocrine tumors. BMC Cancer 14:855CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Galvan JA, Astudillo A, Vallina A, Fonseca PJ, Gomez-Izquierdo L, Garcia-Carbonero R, Gonzalez MV (2013) Epithelial-mesenchymal transition markers in the differential diagnosis of gastroenteropancreatic neuroendocrine tumors. Am J Clin Pathol 140:61–72CrossRefPubMedGoogle Scholar
  96. 96.
    Beasley MB, Lantuejoul S, Abbondanzo S, Chu WS, Hasleton PS, Travis WD, Brambilla E (2003) The P16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 34:136–142CrossRefPubMedGoogle Scholar
  97. 97.
    Scardoni M, Vittoria E, Volante M, Rusev B, Bersani S, Mafficini A, Gottardi M, Giandomenico V, Malleo G, Butturini G, Cingarlini S, Fassan M, Scarpa A (2014) Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract: targeted next-generation sequencing suggests a monoclonal origin of the two components. Neuroendocrinology 100:310–316CrossRefPubMedGoogle Scholar
  98. 98.
    Toyokawa G, Taguchi K, Kojo M, Toyozawa R, Inamasu E, Morodomi Y, Shiraishi Y, Takenaka T, Hirai F, Yamaguchi M, Seto T, Takenoyama M, Ichinose Y (2013) Recurrence of thymic neuroendocrine carcinoma 24 years after total excision: a case report. Oncol Lett 6:147–149PubMedPubMedCentralGoogle Scholar
  99. 99.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alessandra Fabbri
    • 1
  • Mara Cossa
    • 1
  • Angelica Sonzogni
    • 1
  • Paolo Bidoli
    • 2
  • Stefania Canova
    • 2
  • Diego Cortinovis
    • 2
  • Maria Ida Abbate
    • 2
  • Fiorella Calabrese
    • 3
  • Nazarena Nannini
    • 3
  • Francesca Lunardi
    • 3
  • Giulio Rossi
    • 4
  • Stefano La Rosa
    • 5
  • Carlo Capella
    • 6
  • Elena Tamborini
    • 1
  • Federica Perrone
    • 1
  • Adele Busico
    • 1
  • Iolanda Capone
    • 1
  • Barbara Valeri
    • 1
  • Ugo Pastorino
    • 7
  • Adriana Albini
    • 8
  • Giuseppe Pelosi
    • 9
    • 10
    • 11
  1. 1.Department of Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale TumoriMilanItaly
  2. 2.Division of Medical Oncology, San Gerardo HospitalMonzaItaly
  3. 3.Department of Cardiothoracic and Vascular Sciences, Pathological Anatomy SectionUniversity of Padua Medical SchoolPaduaItaly
  4. 4.Division of Anatomic Pathology, Regional Hospital “Umberto Parini”AostaItaly
  5. 5.Institute of PathologyUniversity Hospital–CHUVLausanneSwitzerland
  6. 6.Department of Surgical and Morphological SciencesUniversity of InsubriaVareseItaly
  7. 7.Division of Thoracic SurgeryFondazione IRCCS Istituto Nazionale TumoriMilanItaly
  8. 8.Laboratory of Vascular Biology and Angiogenesis, Science & Technology ParkIRCCS MultiMedica GroupMilanItaly
  9. 9.Department of Oncology and Hemato-OncologyUniversità degli Studi di MilanoMilanItaly
  10. 10.Inter-hospital Pathology Division, Science & Technology ParkIRCCS MultiMedica GroupMilanItaly
  11. 11.Servizio Interaziendale di Anatomia Patologica, Polo Scientifico e TecnologicoMilanItaly

Personalised recommendations