Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae)

Abstract

The cobweb spider Parasteatoda tepidariorum (C. L. Koch, 1841; syn.: Achaearanea tepidariorum) has become an important study organism in developmental biology and evolution as well as in genetics. Besides Cupiennius salei, it has become a chelicerate model organism for evo-devo studies in recent years. However, a staging system taking into account the entire development, and detailed enough to apply to modern studies, is still required. Here we describe the embryonic development of P. tepidariorum and provide a staging system which allows easy recognition of the distinct stages using simple laboratory tools. Differences between P. tepidariorum and other chelicerates, primarily C. salei, are discussed. Furthermore, cocoon production and the first postembryonic moulting procedure are described. Schematic drawings of all stages are provided to ease stage recognition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

A:

Anus

AF:

Anterior furrow

al:

Anterior lateral eye

am:

Anterior median eye

ant:

Anterior

ASp:

Anterior spinneret

AT:

Anal tubercle

B:

Brain

BL:

Book lung system

Bp:

Blastoporus

bs:

Base

Ch:

Chelicera

Cho:

Chorion

Cu:

Cummulus

cx:

Coxa

DF:

Dorsal field

dor:

Dorsal

Ee:

Extra-embryonic region

EgF:

Epigastric furrow

en:

Endite

f:

Fang

fe:

Femur

GZ:

Growth zone

H:

Heart

L:

Walking leg

Lab:

Labium

lat:

Lateral

Lb:

Labrum

LB:

Limb bud

LF:

Lateral furrow

ls:

Lateral subdivision

med:

Median

ms:

Medial subdivision

MSp:

Median spinneret

mt:

Metatarsus

O:

Opisthosomal segment

Op:

Opisthosoma

P:

Pedipalp

pa:

Patella

Pc:

Precheliceral region

PcL:

Precheliceral lobe

Pet:

Petiolus

pl:

Posterior lateral eye

pm:

Posterior median eye

post:

Posterior

Pro:

Prosoma

PT:

Primary thickening

PS:

Prosomal shield

PSp:

Posterior spinneret

Sp:

Spinneret (Anlage)

Sto:

Stomodaeum

T:

Tail

ta:

Tarsus

Ter:

Tergite

ti:

Tibia

tr:

Trochanter

TrO:

Tracheal opening

ven:

Ventral

VS:

Ventral sulcus

References

  1. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747

    PubMed  Article  CAS  Google Scholar 

  2. Akiyama-Oda Y, Oda H (2006) Axis specification in a spider embryo: dpp is required for radial-to-axis symmetry transformation and sog for ventral patterning. Development 133:2347–2357

    PubMed  Article  CAS  Google Scholar 

  3. Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273

    PubMed  Article  CAS  Google Scholar 

  4. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford, 495

    Google Scholar 

  5. Barth FG (2002) A spider's world: senses and behaviour. Springer, Berlin

    Google Scholar 

  6. Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219

    PubMed  Article  CAS  Google Scholar 

  7. Chaw RC, Vance E, Black SD (2007) Gastrulation in the spider Zygiella x-notata involves three distinct phases of cell internalization. Dev Dyn 236:3484–3495

    PubMed  Article  Google Scholar 

  8. Crome W (1963) Embryonalentwicklung ohne “Umrollung” (Reversion) bei Vogelspinnen (Araneae: Orthognatha). Deutsche Entomol Z 10:83–95

    Article  Google Scholar 

  9. Crome W (1964) Eikokon, Embryonalstadien und frühe Jugendformen von Conothele arboricola Pocock (Araneae: Ctenizidae). Zool Jb Syst 91:411–450

    Google Scholar 

  10. Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 95:10665–10670

    PubMed  Article  CAS  Google Scholar 

  11. Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12:1711–1716

    PubMed  Article  CAS  Google Scholar 

  12. Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472

    PubMed  Article  CAS  Google Scholar 

  13. Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, the optic ganglia and the mushroom body. J Comp Neur 518:2612–2632

    PubMed  Google Scholar 

  14. Dohle W (1964) Die embryonale Entwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310

    Google Scholar 

  15. Downes MF (1987) A proposal for standardization of the terms used to describe the early development of spiders, based on the study of Theridion rufipes Lucas (Araneae: Theridiidae). Bull Br Arachnol Soc 7:187–193

    Google Scholar 

  16. Edgecombe GD, Giribet G (2002) Myriapod phylogeny and the relationships of Chilopoda. In: Llorente Bousquets J, Morrone JJ (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento, Volumen III. Universidad Nacional Autónoma de México, México, pp 143–168

    Google Scholar 

  17. Foelix RF (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  18. Gruner H-E (1993) Lehrbuch der speziellen Zoologie (Kaestner, A), Vol. 1: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer, Jena, p 1009

    Google Scholar 

  19. Hajer J, Hrubá L (2007) Wrap attack of the spider Achaearanea tepidariorum (Araneae: Theridiidae) by preying on mealybugs Planococcus citri (Homoptera: Pseudococcidae). J Ethol 25:9–20

    Article  Google Scholar 

  20. Holm A (1954) Notes on the development of an orthognath spider, Ischnothele karschi Bös & Lenz. Zool Bidr Uppsala 30:199–222

    Google Scholar 

  21. Homann H (1971) Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z Morph Tiere 69:201–272

    Article  Google Scholar 

  22. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    PubMed  Article  CAS  Google Scholar 

  23. Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arth Struct Dev 39:436–445

    Article  Google Scholar 

  24. Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nature Comm 2:500

    Article  Google Scholar 

  25. Khila A, Grbic M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251

    PubMed  Article  CAS  Google Scholar 

  26. Kim KW, Roland C (2000) Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value. Behav Proc 50:31–42

    Article  Google Scholar 

  27. Knight DP, Vollrath F (1999) Liquid crystals and flow elongation in a spider's silk production line. Proc R Soc Lond B 266:519–523

    Article  Google Scholar 

  28. Larink O (1969) Zur Entwicklungsgeschichte von Petrobius brevistylis (Thysanura, Insecta). Helgoländer Wiss Meeresuntersuchungen 19:111–155

    Article  Google Scholar 

  29. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106(9):3762–3774

    PubMed  Article  CAS  Google Scholar 

  30. Liu Y, Maas A, Waloszek D (2009) Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arth Struct Dev 38:401–416

    Article  Google Scholar 

  31. Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the Arthropoda. Phil Tran Roy Soc London 233:483–580

    Article  Google Scholar 

  32. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498

    PubMed  Article  Google Scholar 

  33. Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90

    Google Scholar 

  34. Mittmann B (2002) Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull 203:221–222

    PubMed  Article  Google Scholar 

  35. Mittmann B, Scholtz G (2001) Distal-less expression in embryos of Limulus polyphemus (Chelicerata, Xiphosura) and Lepisma saccharina (Insecta, Zygentoma) suggests a role in the development of mechanoreceptors, chemoreceptors, and the CNS. Dev Genes Evol 211:232–243

    PubMed  Article  CAS  Google Scholar 

  36. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  37. Miyashita M (1987a) Development and egg production of Achaearanea tepidariorum (C. L. Koch) (Araneae, Theridiidae) under long and short photoperiods. J Arachnol 15:51–58

    Google Scholar 

  38. Miyashita M (1987b) Egg production of Achaearanea tepidariorum (C. L. Koch) (Araneae, Theridiidae) in the field in Japan. J Arachnol 15:130–132

    Google Scholar 

  39. Montgomery TH (1903) Studies on the habits of spiders, particularly those of the mating period. Proc Acad Nat Sci Phila 55:59–149

    Google Scholar 

  40. Montgomery TH (1906) The oviposition, cocooning and hatching of an aranead, Theridium tepidariorum C. Koch. Biol Bull 12:1–10

    Article  Google Scholar 

  41. Morewood W, Hoover K, Sellmer J (2003) Predation by Achaearanea tepidariorum (Araneae: Theridiidae) on Anoplophora glabripennis (Coleoptera:Cerambycidae). Great Lakes Entomol 36:31–34

    Google Scholar 

  42. Oda H, Osamu N, Hirao Y, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signalling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205

    PubMed  Article  CAS  Google Scholar 

  43. Prpic N-M, Damen WGM (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302

    PubMed  Article  Google Scholar 

  44. Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signalling. Dev Biol 264:119–140

    PubMed  Article  CAS  Google Scholar 

  45. Prpic N-M, Schoppmeier M, Damen WGM (2008a) Gene silencing via embryonic RNAi in spider embryos. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5070

  46. Prpic N-M, Schoppmeier M, Damen WGM (2008b) Whole-mount in situ hybridization of spider embryos. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5068

  47. Scheibel T (2009) Spinnenseide—Was Spiderman wissen sollte. Biospektrum 01(09):23–25

    Google Scholar 

  48. Schoppmeier M, Damen WGM (2001) Double stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionary conserved in arthropod appendage formation. Dev Genes Evol 211:76–82

    PubMed  Article  CAS  Google Scholar 

  49. Seifert G (1967) Die Cuticula von Polyxenus lagurus L. (Diplopoda, Pselaphognatha). Zoomorphology 59(1):42–53

    Google Scholar 

  50. Seitz K-A (1966) Normale Entwicklung des Arachniden-Embryos Cupiennius salei Keyserling und seine Regulationsbefähigung nach Röntgenbestrahlungen. Zool Jb Anat 83:327–447

    Google Scholar 

  51. Shear WA, Edgecombe GD (2010) Phylogeny and the palaeontological record of Myriapoda. Arth Struct Dev 39:174–190

    Article  Google Scholar 

  52. Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545

    PubMed  Article  CAS  Google Scholar 

  53. Simonnet F, Célérier M-L, Quéinnec E (2006) Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 216:467–480

    PubMed  Article  Google Scholar 

  54. Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348

    PubMed  Article  CAS  Google Scholar 

  55. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865

    PubMed  Article  CAS  Google Scholar 

  56. Suzuki H, Kondo A (1995) Early embryonic development, including germ-disc stage, in the theridiid spider Achaearanea japonica (Bös. et Str.). J Morph 224:147–157

    Article  Google Scholar 

  57. Telford MJ, Thomas RH (1998a) Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594

    PubMed  Article  CAS  Google Scholar 

  58. Telford MJ, Thomas RH (1998b) Expression of homeobox genes show chelicerate arthropods retain their deutocerebral segment. PNAS 95:10671–10675

    PubMed  Article  CAS  Google Scholar 

  59. Vachon M (1957) Contribution à l`étude du développement postembryonnaire des araignées. Première note. Généralités et nomenclature des stades. Bull Soc Zool France 82:337–354

    Google Scholar 

  60. Weihmann T, Karner M, Full R, Blickhan R (2010) Jumping kinematics in the wandering spider Cupiennius salei. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:421–438

    PubMed  Article  Google Scholar 

  61. Weygoldt P (1965) Vergleichend-embryologische Untersuchungen an Pseudoskorpionen III. Neobisium muscorum. Z Morphol Ökol Tiere 55:321–382

    Article  Google Scholar 

  62. Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata C.L. Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphology 82:137–199

    Article  Google Scholar 

  63. Weygoldt P (1979) Significance of later embryonic stages and head development in arthropod phylogeny. In: Gupta AD (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York

    Google Scholar 

  64. Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: Barth FA (ed) Neurobiology of Arachnids. Springer, Berlin, pp 20–37

    Google Scholar 

  65. Wilson RS (1962) The control of dragline spinning in the garden spider. Quart J Micr Sci 104:557–571

    Google Scholar 

  66. Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564

    PubMed  Article  Google Scholar 

  67. Wolff C, Hilbrant M (2011) The embryonic development of the Central American wandering spider Cupiennius salei. Front Zool 8:15. doi:10.1186/1742-9994-8-15

    PubMed  Article  Google Scholar 

  68. Yamazaki K, Akiyama-Oda Y, Oda H (2005) Expression patterns of a twist-related gene in embryos of Achaearanea tepidariorum reveal divergent aspects of mesoderm development in the fly and spider. Zool Sci 22:177–185

    PubMed  Article  CAS  Google Scholar 

  69. Yoshikura M (1955) Embryological studies on the liphistiid spider, Heptathela kimurai—part II. Kumamoto J Sci 2:1–86

    Google Scholar 

  70. Yoshikura M (1958) On the development of a purse-web spider, Atypus karschi Dönitz. Kumamoto J Sci 3:73–86

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge A. McGregor (Oxford), M. Hilbrant (Oxford) and E. Schwager (Boston) for providing specimen of P. tepidariorum; H. Petarus (Botanical Garden, Freiburg) for allowing B. M. to collect spiders in the Botanical Garden; P. Nabavi (Freiburg) for a second determination of the ‘wild’ spiders as they are difficult to separate from Achaearanea simulans; K.-F. Fischbach (Freiburg) for providing his lab space and equipment in a non-bureaucratical and generous manner to B. M.; M. Helmstädter (Freiburg) for help with the cocoon production time lapse movie. N.-M. Prpic-Schäper (Göttingen), H. Oda and Y. Akiyama-Oda (both Osaka) provided very helpful comments on the first draft. Furthermore, H. Oda and Y. Akiyama-Oda allowed us generously to benefit from unpublished results. In addition, this article benefited from the constructive review by two anonymous reviewers. We thank J. Dunlop (Berlin) and R. Ashford (London) for improving the English. The study was supported by the Deutsche Forschungsgemeinschaft (MI 1389/1-1).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Beate Mittmann or Carsten Wolff.

Additional information

Communicated by V. Hartenstein

Electronic supplementary materials

Below is the link to the electronic supplementary material.

This movie shows the almost complete sequence of cocoon production by a female spider. (MPG 2880 kb)

This movie shows the embryonic development of four embryos at room temperature (about 22°C). The movie starts at early stage 1 with the earliest cleavages and ends in frame 250 with the germ disc stage 3. (MPG 9772 kb)

This movie shows the embryonic development of one embryo at room temperature (about 22°C). The movie starts at late stage 1 with the first cleavages and ends in frame 850 with the stage 10.1 (limb differentiation). (MPG 9457 kb)

Supplementary Fig. 1

This figure provides a table containing lateral views of all developmental stages of Parasteatoda tepidariorum including the numbers of hours after egg laying (hAEL) at 25°C as well as a comparison to previously defined stages of P. tepidariorum and the number of the more or less correlating stages of Cupiennius salei. (PDF 1529 kb)

Supplementary Fig. 2

This figure show schematic drawings of all embryonic stages of Parasteatoda tepidariorum in frontal and lateral view. For practical reasons, the postembryo is just presented in ventral view. 1: stages 1–7, 2: stages 8–13, 3: stages 14–15 and postembryo. The pedipalpal endite is accentuated by darker colour. (PDF 306 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mittmann, B., Wolff, C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222, 189–216 (2012). https://doi.org/10.1007/s00427-012-0401-0

Download citation

Keywords

  • Parasteatoda/Achaearanea tepidariorum
  • Embryonic development
  • Staging
  • Embryogenesis
  • Cupiennius salei
  • Morphogenesis