Influence of the stimulus material on gender differences in a mental-rotation test

Abstract

Gender differences in mental-rotation tests with cube figures as rotational material are well examined and robust. Besides biological or socialization factors, task characteristics could partly be responsible for men’s advantage in mental rotation. Therefore, we investigated in two studies the influence of different rotational materials on the gender differences in mental-rotation performance. In the first study, 134 undergraduate students (89 women, 45 men) participated using a mental-rotation test with either cube or pellet figures. Significant gender differences in favour of men but no interaction of gender and material were found. In the second study, 189 undergraduate students (110 women, 79 men) solved a mental-rotation test with either male or female-stereotyped objects. Significant gender differences appeared only when male-stereotyped objects were used as rotational material, but not for female-stereotyped material. A significant interaction of gender and material appeared. Hence, some rotational objects seem to have an influence on participants’ mental-rotation performance and the gender differences in this task while others do not affect performances of women and men.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Data will be made available.

References

  1. Alexander, G. M., & Evardone, M. (2008). Blocks and bodies: Sex differences in a novel version of the Mental Rotations Test. Hormones and Behavior, 53(1), 177–184.

    PubMed  Article  Google Scholar 

  2. Alexander, G. M., & Son, T. (2007). Androgens and eye movements in women and men during a test of mental rotation ability. Hormones and Behavior, 52(2), 197–204.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12.

    Google Scholar 

  4. Chatterjee, A. (2008). The neural organization of spatial thought and language. Seminars in Speech and Language, 29(3), 226–238.

    PubMed  Article  Google Scholar 

  5. Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111(4), 845.

    PubMed  Article  Google Scholar 

  6. Doyle, R. A., & Voyer, D. (2013). Bodies and occlusion: Item types, cognitive processes, and gender differences in mental rotation. The Quarterly Journal of Experimental Psychology, 66(4), 801–815.

    PubMed  Article  Google Scholar 

  7. Doyle, R. A., & Voyer, D. (2016). Stereotype manipulation effects on math and spatial test performance: a meta-analysis. Learning and Individual Differences, 47, 103–116.

    Article  Google Scholar 

  8. Doyle, R. A., & Voyer, D. (2018). Photographs of real human figures: Item types and persistent sex differences in mental rotation. Quarterly Journal of Experimental Psychology, 71(11), 2411–2420. https://doi.org/10.1177/1747021817742079.

    Article  Google Scholar 

  9. Doyle, R. A., Voyer, D., & Lesmana, M. (2016). Item type, occlusion, and gender differences in mental rotation. The Quarterly Journal of Experimental Psychology, 69(8), 1530–1544.

    PubMed  Article  Google Scholar 

  10. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    PubMed  Article  Google Scholar 

  11. Fisher, M. L., Meredith, T., & Gray, M. (2018). Sex differences in mental rotation ability are a consequence of procedure and artificiality of stimuli. Evolutionary Psychological Science, 4(2), 124–133.

    Article  Google Scholar 

  12. Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171.

    PubMed  Article  Google Scholar 

  13. Grimshaw, G. M., Sitarenios, G., & Finegan, J. A. K. (1995). Mental rotation at 7 years-relations with prenatal testosterone levels and spatial play experiences. Brain and Cognition, 29(1), 85–100.

    PubMed  Article  Google Scholar 

  14. Hausmann, M., Schoofs, D., Rosenthal, H. E., & Jordan, K. (2009). Interactive effects of sex hormones and gender stereotypes on cognitive sex differences—a psychobiosocial approach. Psychoneuroendocrinology, 34(3), 389–401.

    PubMed  Article  Google Scholar 

  15. Heil, M., Jansen, P., Quaiser-Pohl, C., & Neuburger, S. (2012). Gender-specific effects of artificially induced gender beliefs in mental rotation. Learning and Individual Differences, 22(3), 350–353.

    Article  Google Scholar 

  16. Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 61(5), 683–689.

    Article  Google Scholar 

  17. Jansen, P., & Lehmann, J. (2013). Mental rotation performance in soccer players and gymnasts in an object-based mental rotation task. Advances in Cognitive Psychology, 9(2), 92.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Jansen-Osmann, P., & Heil, M. (2007). Suitable stimuli to obtain (no) gender differences in the speed of cognitive processes involved in mental rotation. Brain and Cognition, 64(3), 217–227.

    PubMed  Article  Google Scholar 

  19. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory and Cognition, 29(5), 745–756.

    PubMed  Article  Google Scholar 

  20. Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: a new characterization of visual cognitive style. Memory and Cognition, 33(4), 710–726.

    PubMed  Article  Google Scholar 

  21. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56, 1479–1498.

    PubMed  Article  Google Scholar 

  22. Moè, A. (2009). Are males always better than females in mental rotation? Exploring a gender belief explanation. Learning and Individual Differences, 19(1), 21–27.

    Article  Google Scholar 

  23. Moè, A., & Pazzaglia, F. (2006). Following the instructions!: effects of gender beliefs in mental rotation. Learning and Individual Differences, 16(4), 369–377.

    Article  Google Scholar 

  24. Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2012). A threat in the classroom. Gender stereotype activation and mental-rotation performance in elementary-school children. Zeitschrift für Psychologie, 220(2), 61–69.

    Article  Google Scholar 

  25. Newcombe, N., & Shipley, T. (2015). Thinking about spatial thinking: new typology, new assessments. In J. Gero (Ed.), Studying Visual and Spatial Reasoning for Design Creativity. Dordrecht: Springer.

    Google Scholar 

  26. Quinn, P. C., & Liben, L. S. (2014). A sex difference in mental rotation in infants: convergent evidence. Infancy, 19(1), 103–116.

    Article  Google Scholar 

  27. Rahe, M., & Quaiser-Pohl, C. (2019). Mental-rotation performance in middle and high-school age: influence of stimulus material, gender stereotype beliefs, and perceived ability of gendered activities. Journal of Cognitive Psychology, 31(5–6), 594–604.

    Article  Google Scholar 

  28. Rahe, M., & Quaiser-Pohl, C. (2020). Cubes or pellets in mental-rotation tests: effects on gender differences and on the performance in a subsequent math test. Behavioral Sciences, 10(1), 12.

    Article  Google Scholar 

  29. Rahe, M., Ruthsatz, V., Jansen, P., & Quaiser-Pohl, C. (2018). Influence of sex-stereotyped stimuli on the mental-rotation performance of elderly persons. Experimental Aging Research, 44(4), 284–296.

    PubMed  Article  Google Scholar 

  30. Ruthsatz, V., Neuburger, S., Jansen, P., & Quaiser-Pohl, C. (2014). Pellet figures, the feminine answer to cube figures? Influence of stimulus features and rotational axis on the mental-rotation performance of fourth-grade boys and girls. In C. Freksa, B. Nebel, M. Hegarty, & T. Barkowsky (Eds.), International Conference on Spatial Cognition (pp. 370–382). Cham: Springer.

    Google Scholar 

  31. Ruthsatz, V., Neuburger, S., Jansen, P., & Quaiser-Pohl, C. (2015). Cars or dolls? Influence of the stereotyped nature of the items on children’s mental-rotation performance. Learning and Individual Differences, 43, 75–82.

    Article  Google Scholar 

  32. Ruthsatz, V., Neuburger, S., Rahe, M., Jansen, P., & Quaiser-Pohl, C. (2017). The gender effect in 3D-Mental-rotation performance with familiar and gender-stereotyped objects–a study with elementary school children. Journal of Cognitive Psychology, 29(6), 717–730.

    Article  Google Scholar 

  33. Ruthsatz, V., Rahe, M., Schüermann, L., & Quaiser-Pohl, C. (2019). Girls’ stuff, boys’ stuff and mental rotation: fourth graders rotate faster with gender-congruent stimuli. Journal of Cognitive Psychology, 31(2), 225–239.

    Article  Google Scholar 

  34. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

    PubMed  Article  Google Scholar 

  35. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797.

    PubMed  Article  Google Scholar 

  36. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.

    PubMed  Article  Google Scholar 

  37. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.

    PubMed  Article  Google Scholar 

  38. Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: a meta-analysis. Psychonomic Bulletin and Review, 18(2), 267–277.

    PubMed  Article  Google Scholar 

  39. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250.

    PubMed  Article  Google Scholar 

  40. Walton, G. M., & Cohen, G. L. (2003). Stereotype lift. Journal of Experimental Social Psychology, 39(5), 456–467.

    Article  Google Scholar 

Download references

Funding

We received no funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martina Rahe.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Ethics approval

The experiment was conducted according to the ethical guidelines of the Helsinki declaration. Ethical approval for this study was not required in accordance with the conditions outlined by the German Research Foundation where research that carries no additional risk beyond daily activities does not require Research Ethics Board Approval.

Consent to participate

All participants gave their informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahe, M., Ruthsatz, V. & Quaiser-Pohl, C. Influence of the stimulus material on gender differences in a mental-rotation test. Psychological Research (2020). https://doi.org/10.1007/s00426-020-01450-w

Download citation