Gender stereotypes and incremental beliefs in STEM and non-STEM students in three countries: relationships with performance in cognitive tasks

Abstract

Women’s underrepresentation in science, technology, engineering and mathematics (STEM) has been linked, among others, to gender stereotypes and ability-related beliefs as well as gender differences in specific cognitive abilities. However, the bulk of studies focused on gender stereotypes related to mathematics. The present study, therefore, aimed to map gender stereotypes and incremental beliefs (i.e., the conviction about modifiability) with respect to a wide range of stereotypical male-favouring and female-favouring abilities. Gender stereotypes and incremental beliefs were assessed with self-report questionnaires in 132 STEM students (65 women) and 124 non-STEM students (73 women) in three European countries ranked in the top, middle, and bottom of the Global Gender Gap Report. Moreover, a mental rotation and a verbal fluency test were completed. Men endorsed male-favouring stereotypes more than women, and women endorsed female-favouring stereotypes more than men, an effect that was most pronounced in the country with the larger gender gap. Male STEM students endorsed male-favouring stereotypes more strongly than male non-STEM and female STEM students. Male non-STEM students endorsed female-favouring stereotypes less than female and male STEM students. Female STEM students reported higher incremental beliefs than female non-STEM students, especially in the country with the lowest gender gap. Men outperformed women, and STEM students outperformed non-STEM in mental rotation, while women outperformed men in verbal fluency. Male STEM students’ stronger endorsement of male-favouring stereotypes might reflect genuine group differences, at least in mental rotation. While potentially such gender stereotypes can help creating a “chilly climate” where women in academic STEM degrees are expected to perform poorly, those women believed more in the possibility to change and improve in male-favouring abilities which could help them to overcome the potential negative effect of stereotyping.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory, 16, 248–266. https://doi.org/10.1101/lm.918309.

    Article  Google Scholar 

  2. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78, 246–263. https://doi.org/10.1111/j.1467-8624.2007.00995.x.

    Article  PubMed  Google Scholar 

  3. Bull, R., & Benson, P. J. (2006). Digit ratio (2D:4D) and the spatial representation of magnitude. Hormones and Behavior, 50, 194–199. https://doi.org/10.1016/j.yhbeh.2006.02.008.

    Article  PubMed  Google Scholar 

  4. Bull, R., Cleland, A. A., & Mitchell, T. (2013). Sex differences in the spatial representation of number. Journal of Experimental Psychology: General, 142, 181–192. https://doi.org/10.1037/a0028387.

    Article  Google Scholar 

  5. Cabay, M., Bernstein, B. L., Rivers, M., & Fabert, N. (2018). Chilly climates, balancing acts, and shifting pathways: What happens to women in STEM doctoral programs. Social Sciences, 7, 23. https://doi.org/10.3390/socsci7020023.

    Article  Google Scholar 

  6. Carnes, M., Devine, P. G., Baier Manwell, L., Byars-Winston, A., Fine, E., Ford, C. E., et al. (2015). The effect of an intervention to break the gender bias habit for faculty at one institution: A cluster randomized, controlled trial. Academic Medicine, 90, 221–230. https://doi.org/10.1097/ACM.0000000000000552.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ceci, S. J. (2017). Women in academic science: Experimental findings from hiring studies. Educational Psychologist, 53, 22–41. https://doi.org/10.1080/00461520.2017.1396462.

    Article  Google Scholar 

  8. Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15, 75–141. https://doi.org/10.1177/1529100614541236.

    Article  PubMed  Google Scholar 

  9. Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135, 218–261. https://doi.org/10.1037/a0014412.

    Article  PubMed  Google Scholar 

  10. Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math—Gender stereotypes in elementary school children. Child Development, 82, 766–779. https://doi.org/10.1111/j.1467-8624.2010.01529.x.

    Article  PubMed  Google Scholar 

  11. Dweck, C. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia, PA: Psychology Press.

    Google Scholar 

  12. Eddy, S. L., & Brownell, S. E. (2016). Beneath the numbers: A review of gender disparities in undergraduate education across science, technology, engineering, and math disciplines. Physical Review Physics Education Research, 12, 1–20. https://doi.org/10.1103/PhysRevPhysEducRes.12.020106.

    Article  Google Scholar 

  13. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  Google Scholar 

  14. Fredericks, J. A., & Eccles, J. S. (2002). Children’s competence and value beliefs from childhood through adolescence: Growth trajectories in two male-sex-typed domains. Developmental Psychology, 38, 519–533. https://doi.org/10.1037/0012-1649.38.4.519.

    Article  Google Scholar 

  15. Halari, R., Hines, M., Kumari, V., Mehrotra, R., Wheeler, M., Ng, V., et al. (2005). Sex differences and individual differences in cognitive performance and their relationship to endogenous gonadal hormones and gonadotropins. Behavioral Neuroscience, 119, 104–117. https://doi.org/10.1037/0735-7044.119.1.104.

    Article  PubMed  Google Scholar 

  16. Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). NY: Psychology Press.

    Google Scholar 

  17. Halpern, D. F., & Tan, U. (2001). Stereotypes and steroids: Using a psychobiosocial model to understand cognitive sex differences. Brain and Cognition, 45, 392–414. https://doi.org/10.1006/brcg.2001.1287.

    Article  PubMed  Google Scholar 

  18. Hausmann, M. (2014). Arts versus science—Academic background implicitly activates gender stereotypes on cognitive abilities with threat raising men's (but lowering women's) performance. Intelligence, 46, 235–245. https://doi.org/10.1016/j.intell.2014.07.004.

    Article  Google Scholar 

  19. Hausmann, M., Schoofs, D., Rosenthal, H. E., & Jordan, K. (2009). Interactive effects of sex hormones and gender stereotypes on cognitive sex differences: A psychobiosocial approach. Psychoneuroendocrinology, 34, 389–401. https://doi.org/10.1016/j.psyneuen.2008.09.019.

    Article  PubMed  Google Scholar 

  20. Heil, M., Jansen, P., Quaiser-Pohl, C., & Neuburger, S. (2012). Gender-specific effects of artificially induced gender beliefs in mental rotation. Learning and Individual Differences, 22, 350–353. https://doi.org/10.1016/j.lindif.2012.01.004.

    Article  Google Scholar 

  21. Herlitz, A., Airaksinen, E., & Nordström, E. (1999). Sex differences in episodic memory: The impact of verbal and visuospatial ability. Neuropsychology, 13, 590–597. https://doi.org/10.1037//0894-4105.13.4.590.

    Article  PubMed  Google Scholar 

  22. Hirnstein, M., Coloma Andrews, L. C., & Hausmann, M. (2014). Gender-stereotyping and cognitive sex differences in mixed and same-sex groups. Archives of Sexual Behavior, 43, 1663–1673. https://doi.org/10.1007/s10508-014-0311-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hirnstein, M., Freund, N., & Hausmann, M. (2012). Gender stereotyping enhances verbal fluency performance in men (and women). Zeitschrift für Psychologie, 220, 70–77. https://doi.org/10.1027/2151-2604/a000098.

    Article  Google Scholar 

  24. Horn, W. (1962). Leistungsprüfsystem (LPS). Göttingen: Hogrefe Verlag fuer Psychologie.

    Google Scholar 

  25. Huber, S., Nuerk, H. C., Reips, U. D., & Soltanlou, M. (2017). Individual differences influence two-digit number processing, but not their analog magnitude processing: A large-scale online study. Psychological Research Psychologische Forschung, 83, 1444–1464. https://doi.org/10.1007/s00426-017-0964-5.

    Article  PubMed  Google Scholar 

  26. Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal abilities: A meta-analysis. Psychological Bulletin, 104, 53–69.

    Article  Google Scholar 

  27. Kurtz-Costes, B., Copping, K. E., Rowley, S. J., & Kinlaw, C. R. (2014). Gender and age differences in awareness and endorsement of gender stereotypes about academic abilities. European Journal of Psychology of Education, 29, 603–618. https://doi.org/10.1007/s10212-014-0216-7.

    Article  Google Scholar 

  28. Leslie, S. J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347, 262–265. https://doi.org/10.1126/science.1261375.

    Article  PubMed  Google Scholar 

  29. Levine, S. C., Foley, A., Lourenco, S., Ehrich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. Wiley Interdisciplinary Review Cognitive Science, 7, 127–155. https://doi.org/10.1002/wcs.1380.

    Article  Google Scholar 

  30. Levy, S. R., Stroessner, S. J., & Dweck, C. S. (1998). Stereotype formation and endorsement: The role of implicit theories. Journal of Personality and Social Psychology, 74, 1421–1436. https://doi.org/10.1037/0022-3514.74.6.1421.

    Article  Google Scholar 

  31. Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological Assessment. New York, NY: Oxford University Press.

    Google Scholar 

  32. Li, Q. (1999). Teachers’ beliefs and gender differences in mathematics: A review. Educational Research, 41, 63–76. https://doi.org/10.1080/0013188990410106.

    Article  Google Scholar 

  33. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex-differences in spatial ability—A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  34. Lugli, L., D'Ascenzo, S., Borghi, A. M., & Nicoletti, R. (2018). Clock walking and gender: How circular movements influence arithmetic calculations. Frontiers in Psychology, 9, 1599. https://doi.org/10.3389/fpsyg.2018.01599.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18, 37–45. https://doi.org/10.1016/j.tics.2013.10.011.

    Article  PubMed  Google Scholar 

  36. Moè, A. (2009). Expectations and recall of texts: The more able–more difficult effect. Learning and Individual Differences, 19, 609–614. https://doi.org/10.1016/j.lindif.2009.08.002.

    Article  Google Scholar 

  37. Moè, A. (2012). Gender difference does not mean genetic difference: Externalizing improves performance in mental rotation. Learning and Individual Differences, 22, 20–24. https://doi.org/10.1016/j.lindif.2011.11.001.

    Article  Google Scholar 

  38. Moè, A. (2016a). Teaching motivation and strategies to improve mental rotation abilities. Intelligence, 59, 16–23. https://doi.org/10.1016/j.intell.2016.10.004.

    Article  Google Scholar 

  39. Moè, A. (2016b). Does experience with spatial school subjects favour girls’ mental rotation performance? Learning and Individual Differences, 47, 11–16. https://doi.org/10.1016/j.lindif.2015.12.007.

    Article  Google Scholar 

  40. Moè, A. (2018a). Mental rotation and mathematics: Gender-stereotyped beliefs and relationships in primary school children. Learning and Individual Differences, 61, 172–180. https://doi.org/10.1016/j.lindif.2017.12.002.

    Article  Google Scholar 

  41. Moè, A. (2018b). Effects of group gender composition on Mental Rotation Test performance in women. Archives of Sexual Behavior, 47, 2299–2305. https://doi.org/10.1007/s10508-018-1245-0.

    Article  Google Scholar 

  42. Moè, A., Jansen, P., & Pietsch, S. (2018). Childhood preference for spatial toys. Gender differences and relationships with mental rotation in STEM and non-STEM students. Learning and Individual Differences, 68, 108–115. https://doi.org/10.1016/j.lindif.2018.10.003.

    Article  Google Scholar 

  43. Moè, A., Meneghetti, C., & Cadinu, M. (2009). Women and mental rotation: Incremental theory and spatial strategy use enhance performance. Personality and Individual Differences, 46, 187–191. https://doi.org/10.1016/j.paid.2008.09.030.

    Article  Google Scholar 

  44. Moè, A., & Pazzaglia, F. (2006). Following the instructions! Effects of gender beliefs in mental rotation. Learning and Individual Differences, 16, 369–377. https://doi.org/10.1016/j.lindif.2007.01.002.

    Article  Google Scholar 

  45. National Science Foundation. (2018). Figure 3–26. Women in the workforce and in S&E: 1993 and 2015. Retrieved from www.nsf.gov/statistics/2018/nsb20181/report/sections/science-and-engineering-labor-force/women-and-minorities-in-the-s-e-workforce.

  46. Neill, J. (2008). Writing up a factor analysis. Retrieved on October 24th www.bwgriffin.com/gsu/courses/edur9131/content/Neill2008_WritingUpAFactorAnalysis.pdf.

  47. Newcombe, N. S., & Frick, A. (2010). Early education for spatial intelligence: Why, what, and how. Mind, Brain, and Education, 4, 102–111.

    Article  Google Scholar 

  48. North, S. (2005). Different values, different skills? A comparison of essay writing by students from arts and science backgrounds. Studies in Higher Education, 30, 517–533. https://doi.org/10.1080/03075070500249153.

    Article  Google Scholar 

  49. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math _ male, me _ female, therefore math not _ me. Journal of Personality and Social Psychology, 83, 44–59. https://doi.org/10.1037/0022-3514.83.1.44.

    Article  PubMed  Google Scholar 

  50. Nosek, B. A., & Smyth, F. L. (2011). Implicit social cognitions predict sex differences in math engagement and achievement. American Educational Research Journal, 48, 1125–1156. https://doi.org/10.3102/0002831211410683.

    Article  Google Scholar 

  51. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58.

    Article  Google Scholar 

  52. Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N = 3367): Overall sex differences and the role of academic program in performance. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 42, 1005–1014. https://doi.org/10.1016/S0010-9452(08)70206-5.

    Article  Google Scholar 

  53. Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. PLoS ONE, 7, e39904. https://doi.org/10.1371/journal.pone.0039904.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sanchis-Segura, C., Aguirre, N., Cruz-Gómez, Á. J., Solozano, N., & Forn, C. (2018). Do gender-related stereotypes affect spatial performance? Exploring when, how and to whom using a chronometric two-choice Mental Rotation Task. Frontiers in Psychology, 9, 1261–1261. https://doi.org/10.3389/fpsyg.2018.01261.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Scheuringer, A., Wittig, R., & Pletzer, B. (2017). Sex differences in verbal fluency: The role of strategies and instructions. Cognitive Processing, 18, 407–417. https://doi.org/10.1007/s10339-017-0801-1.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press.

    Google Scholar 

  57. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703. https://doi.org/10.1126/science.171.3972.701.

    Article  PubMed  Google Scholar 

  58. Simpkins, S. D., Davis-Kean, P., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42, 70–83. https://doi.org/10.1037/0012-1649.42.1.70.

    Article  PubMed  Google Scholar 

  59. Smeding, A. (2012). Women in science, technology, engineering, and mathematics (STEM): An investigation of their implicit gender stereotypes and stereotypes’ connectedness to math performance. Sex Roles, 67, 617–629. https://doi.org/10.1007/s11199-012-0209-4.

    Article  Google Scholar 

  60. Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within- and across-nation assessment of 10 years of PISA data. PLoS ONE, 8, 10. https://doi.org/10.1371/journal.pone.0057988.

    Article  Google Scholar 

  61. Szameitat, A. J., Hamaida, Y., Tulley, R. S., Saylik, R., & Otermans, P. C. J. (2015). “Women are better than men”—Public beliefs on gender differences and other aspects in multitasking. PLoS ONE, 10, e0140371. https://doi.org/10.1371/journal.pone.0140371.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tomasetto, C., Alparone, F. R., & Cadinu, M. (2011). Girls' math performance under stereotype threat: The moderating role of mothers' gender stereotypes. Developmental psychology, 47, 943–949. https://doi.org/10.1037/a0024047.

    Article  PubMed  Google Scholar 

  63. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotation, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.

    Article  Google Scholar 

  64. Vander Heyden, K. M., van Atteveldt, N. M., Huizinga, M., & Jolles, J. (2016). Implicit and explicit gender beliefs in spatial ability: Stronger stereotyping in boys than girls. Frontiers in Psychology, 7, 1114–1114. https://doi.org/10.3389/fpsyg.2016.01114.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Voyer, D., & Jansen, P. (2016). Sex differences in chronometric mental rotation with human bodies. Psychological Research Psychologische Forschung, 80, 974–984. https://doi.org/10.1007/s00426-015-0701-x.

    Article  PubMed  Google Scholar 

  66. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  Google Scholar 

  67. Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M. P. (2015). Two brief interventions to mitigate a “chilly climate” transform women’s experience, relationships, and achievement in engineering. Journal of Educational Psychology, 107, 468–485. https://doi.org/10.1037/a0037461.

    Article  Google Scholar 

  68. Wang, M. T., & Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy-value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33, 1–49. https://doi.org/10.1016/j.dr.2013.08.001.

    Article  Google Scholar 

  69. Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24, 770–775. https://doi.org/10.1177/0956797612458937.

    Article  PubMed  Google Scholar 

  70. Watkins, M. W. (2000). Monte Carlo PCA for Parallel Analysis [computer software]. State College, PA: Ed & Psych Associates.

  71. World Economic Forum. (2016). The Global Gender Gap Report. Retrieved from November 19th 2019 www.weforum.org/reports/the-global-gender-gap-report-2016.

  72. World Economic Forum. (2018). The Global Gender Gap Report. Retrieved from November 19th 2019 https://reports.weforum.org/global-gender-gap-report-2018.

  73. Wraga, M., Duncan, L., Jacobs, E. H., Helt, M., & Church, J. (2006). Stereotype susceptibility narrows the gender gap in imagined self-rotation performance. Psychonomic Bulletin & Review, 13, 813–819. https://doi.org/10.3758/BF03194002.

    Article  Google Scholar 

  74. Zell, E., Krizan, Z., & Teeter, S. R. (2015). Evaluating gender similarities and differences using metasynthesis. American Psychologist, 70, 10–20. https://doi.org/10.1037/a0038208.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Edoardo Biancullo, Giovanni Carta, and Arianna Marola (University of Padua), Thomas Frotvedt, Malin Funnemark, Bodil Haugen, Mai Emilie Ramdahl, Juni Riis, Karoline Sandanger, Nathanum Smith, Mina Thorvaldsen, and Maren Vistnes (University of Bergen), as well as Demi Alexandrou, Rebecca Barton, Fiona Hathaway, Hannah Kwek, and Sarah Thomas (Durham University) who helped us with data collection. Part of this work was supported by the Bergen Research Foundation (Grant BFS2016REK03) to M. Hirnstein. This work was carried out within the scope of the project "use-inspired basic research", for which the Department of General Psychology of the University of Padova has been recognized as "Dipartimento di Eccellenza" by the Ministry of University and Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angelica Moè.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moè, A., Hausmann, M. & Hirnstein, M. Gender stereotypes and incremental beliefs in STEM and non-STEM students in three countries: relationships with performance in cognitive tasks. Psychological Research 85, 554–567 (2021). https://doi.org/10.1007/s00426-019-01285-0

Download citation