Mood state and conflict adaptation: an update and a diffusion model analysis

Abstract

The present study investigated the affective modulation of conflict adaptation. In a first step, we conducted a direct replication of a previous study (Schuch & Pütz, 2018). Positive vs. negative mood state was induced by a success–failure manipulation (between-groups, N = 40 per group). In a subsequent task-switching experiment, the congruency sequence effect was assessed in task repetitions and task switches, measuring conflict adaptation within tasks and between tasks, respectively. We found conflict adaptation (averaged across task repetitions and task switches) to be enhanced in negative mood. We did not replicate our previous finding of enhanced conflict adaptation in task switches in positive mood. In a second step, we combined the replication data with the original data set, yielding a larger database with N = 80 per mood group. Using diffusion modeling, we explored the affective modulation of conflict adaptation in task repetitions. Conflict adaptation was reflected in drift rate, consistent with the idea that response conflict triggers an increase in processing selectivity, thereby attenuating the influence of the irrelevant stimulus dimension. Conflict adaptation was also reflected in boundary separation, suggesting that response conflict on the previous trial triggered an increase in response caution. The mood manipulation did not seem to affect processing selectivity (as captured by drift rate) but affected the setting of response caution (as captured by the boundary separation parameter), with faster and more error-prone responding in the negative than positive mood group. We discuss theoretical implications of these findings, and also briefly consider the affective modulations of other cognitive control measures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A., Miller, G. A., & Heller, W. (2009). Cognitive control mechanisms, emotion and memory: A neural perspective with implications for psychopathology. Neuroscience and Biobehavioral Reviews, 33, 613–630.

    PubMed  Google Scholar 

  2. Botvinick, M. M. (2007). Conflict monitoring and decision-making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, and Behavioral Neuroscience, 7, 356–366.

    Google Scholar 

  3. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    PubMed  Google Scholar 

  4. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.

    PubMed  Google Scholar 

  5. Braem, S., Abrahamse, E. L., Duthoo, W., & Notebaert, W. (2014). What determines the specificity of conflict adaptation? A review, critical analysis, and proposed synthesis. Frontiers in Psychology, 5, Article 1134.

    PubMed  Google Scholar 

  6. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2013). Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex. Journal of Neuroscience, 33(43), 16961–16970.

    PubMed  Google Scholar 

  7. Braem, S., King, J. A., Korb, F. M., Krebs, R. M., Notebaert, W., & Egner, T. (2017). The role of anterior cingulate cortex in the affective evaluation of conflict. Journal of Cognitive Neuroscience, 29, 137–149.

    PubMed  Google Scholar 

  8. Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in task-switching. Cognitive Psychology, 55(1), 37–85.

    PubMed  Google Scholar 

  9. Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, 279.

    PubMed  PubMed Central  Google Scholar 

  10. Clore, G. L., & Huntsinger, J. R. (2007). How emotions inform judgment and regulate thought. Trends in Cognitive Sciences, 11, 393–399.

    PubMed  PubMed Central  Google Scholar 

  11. Coan, J. A., & Allen, J. J. B. (Eds.). (2007). The handbook of emotion elicitation and assessment. New York: Oxford University Press.

    Google Scholar 

  12. Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126, 890–906.

    PubMed  Google Scholar 

  13. De Houwer, J., Hermans, D., Rothermund, K., & Wentura, D. (2002). Affective priming of semantic categorisation responses. Cognition and Emotion, 16(5), 643–666.

    Google Scholar 

  14. Dignath, D., Eder, A. B., Steinhauser, M., & Kiesel, A. Conflict monitoring and the affective signaling hypothesis—An integrative review. Psychonomic Bulletin and Review (in press).

  15. Dreisbach, G., & Fischer, R. (2012). The role of affect and reward in the conflict-triggered adjustment of cognitive control. Frontiers in Human Neuroscience, 6, Article 342.

    PubMed  Google Scholar 

  16. Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24, 255–260.

    Google Scholar 

  17. Durst, M., & Janczyk, M. (2019). Two types of backward crosstalk: Sequential modulations and evidence from the diffusion model. Acta Psychologica, 193, 132–152.

    PubMed  Google Scholar 

  18. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014a). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, 1001.

    PubMed  PubMed Central  Google Scholar 

  19. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014b). The congruency sequence effect 3.0: A critical test of conflict adaptation. PLoS One, 9(10), e110462.

    PubMed  PubMed Central  Google Scholar 

  20. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, and Behavioral Neuroscience, 7, 380–390.

    Google Scholar 

  21. Egner, T. (2017). Conflict adaptation: Past, present, and future of the congruency sequence effect as an index of cognitive control. In T. Egner (Ed.), The Wiley handbook of cognitive control (pp. 64–78). Oxford: Wiley-Blackwell.

    Google Scholar 

  22. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    PubMed  Google Scholar 

  23. Gerrards-Hesse, A., Spies, K., & Hesse, F. W. (1994). Experimental inductions of emotional states and their effectiveness: A review. British Journal of Psychology, 85, 55–78.

    Google Scholar 

  24. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive processes in attention, memory and language (pp. 331–335). Cambridge, MA: MIT Press.

    Google Scholar 

  25. Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117, 759–784.

    PubMed  Google Scholar 

  26. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19, 126–132.

    PubMed  PubMed Central  Google Scholar 

  27. Janczyk, M., & Lerche, V. (2019). A diffusion model analysis of the response-effect compatibility effect. Journal of Experimental Psychology: General, 148(2), 237.

    Google Scholar 

  28. Kiesel, A., Kunde, W., & Hoffmann, J. (2006). Evidence for task-specific resolution of response conflict. Psychonomic Bulletin and Review, 13, 800–806.

    PubMed  Google Scholar 

  29. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136, 849–874.

    PubMed  Google Scholar 

  30. Klauer, K. C., Musch, J., & Eder, A. B. (2005). Priming of semantic classifications: Late and response related, or earlier and more central? Psychonomic Bulletin and Review, 12(5), 897–903.

    PubMed  Google Scholar 

  31. Klinger, M. R., Burton, P. C., & Pitts, G. S. (2000). Mechanisms of unconscious priming: I. Response competition, not spreading activation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(2), 441.

    PubMed  Google Scholar 

  32. Krohne, H. W., Egloff, B., Kohlmann, C. W., & Tausch, A. (1996). Untersuchungen mit einer deutschen Version der “Positive and Negative Affect Schedule” (PANAS). Diagnostica, 42, 139–156.

    Google Scholar 

  33. Krohne, H. W., Pieper, M., Knoll, N., & Breimer, N. (2002). The cognitive regulation of emotions: The role of success versus failure experience and coping dispositions. Cognition and Emotion, 16, 217–243.

    Google Scholar 

  34. Kuhbandner, C., & Zehetleitner, M. (2011). Dissociable effects of valence and arousal in adaptive executive control. PLoS One, 6(12), e29287.

    PubMed  PubMed Central  Google Scholar 

  35. Lerche, V., & Voss, A. (2018). Speed–accuracy manipulations and diffusion modeling: Lack of discriminant validity of the manipulation or of the parameter estimates? Behavior Research Methods, 50(6), 2568–2585.

    PubMed  Google Scholar 

  36. Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behavior Research Methods, 49(2), 513–537.

    PubMed  Google Scholar 

  37. Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51, 40–60.

    PubMed  Google Scholar 

  38. Martin, L. L., & Clore, G. L. (2001). Theories of mood and cognition: A user’s guidebook. Mahwah, NJ: Erlbaum.

    Google Scholar 

  39. Mitchell, R. L. C., & Phillips, L. H. (2007). The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia, 45, 617–629.

    PubMed  Google Scholar 

  40. Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106, 1071–1080.

    PubMed  Google Scholar 

  41. Nummenmaa, L., & Niemi, P. (2004). Inducing affective states with success–failure manipulations: A meta-analysis. Emotion, 4, 207–214.

    PubMed  Google Scholar 

  42. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166.

    PubMed  PubMed Central  Google Scholar 

  43. Phillips, L. H., Bull, R., Adams, E., & Fraser, L. (2002). Positive mood and executive function: Evidence from stroop and fluency tasks. Emotion, 2, 12–22.

    PubMed  Google Scholar 

  44. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59.

    Google Scholar 

  45. Raven, J. C. (1965). Advanced progressive matrices: Sets I and II. London: Lewis.

    Google Scholar 

  46. Raven, J. C. (1976). Standard progressive matrices: Sets A, B, C, D, and E. Oxford: Oxford Psychologists Press.

    Google Scholar 

  47. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Google Scholar 

  48. Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414.

    Google Scholar 

  49. Schuch, S., & Koch, I. (2015). Mood states influence cognitive control: The case of conflict adaptation. Psychological Research, 79, 759–772.

    PubMed  Google Scholar 

  50. Schuch, S., & Pütz, S. (2018). Mood state dissociates conflict adaptation within tasks and across tasks. Journal of Experimental Psychology. Learning, Memory, and Cognition, 44(9), 1487–1499.

    PubMed  Google Scholar 

  51. Schuch, S., Zweerings, J., Hirsch, P., & Koch, I. (2017). Conflict adaptation in positive and negative mood: Applying a success-failure manipulation. Acta Psychologica, 176, 11–22.

    PubMed  Google Scholar 

  52. Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain, and cognitive control in the cingulate cor-tex. Nature Reviews Neuroscience, 12, 154–167.

    PubMed  PubMed Central  Google Scholar 

  53. Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174.

    PubMed  Google Scholar 

  54. Van Steenbergen, H. (2015). Affective modulation of cognitive control: A biobehavioral perspective. In G. Gendolla, M. Tops, & S. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation (pp. 89–107). Heidelberg: Springer.

    Google Scholar 

  55. Van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation: How affect regulates conflict-driven control. Psychological Science, 21, 1629–1634.

    PubMed  Google Scholar 

  56. Van Steenbergen, H., Band, G. P. H., Hommel, B., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2015). Hedonic hotspots regulate cingulate-driven adaptation to cognitive demands. Cerebral Cortex, 25, 1746–1756.

    PubMed  Google Scholar 

  57. Van Steenbergen, H., Booij, L., Band, G. P. H., Hommel, B., & van der Does, A. J. W. (2012). Affective regulation of cognitive-control adjustments in remitted depressive patients after acute tryptophan depletion. Cognitive, Affective, and Behavioral Neuroscience, 12, 280–286.

    Google Scholar 

  58. Vandierendonck, A. (2017). A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behavior Research Methods, 49, 653–673.

    PubMed  Google Scholar 

  59. Voss, A., Nagler, M., & Lerche, V. (2013a). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60, 385–402.

    PubMed  Google Scholar 

  60. Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013b). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536.

    Google Scholar 

  61. Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory and Cognition, 32(7), 1206–1220.

    PubMed  Google Scholar 

  62. Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39(4), 767–775.

    PubMed  Google Scholar 

  63. Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: A tutorial based on fast-dm-30. Frontiers in Psychology, 6, 336.

    PubMed  PubMed Central  Google Scholar 

  64. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of Positive and Negative Affect: The PANAS Scales. Journal of Personality and Social Psychology, 54, 1063–1070.

    PubMed  Google Scholar 

  65. Wendt, M., & Kiesel, A. (2008). The impact of stimulus-specific practice and task instructions on response congruency effects between tasks. Psychological Research, 72(4), 425–432.

    PubMed  Google Scholar 

  66. Westermann, R., Spies, K., Stahl, G., & Hesse, F. W. (1996). Relative effectiveness and validity of mood induction procedures: A meta-analysis. European Journal of Social Psychology, 26, 557–580.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefanie Schuch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Funding

This research/Stefanie Schuch was supported by a grant within the Priority Program (SPP 1772) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant No. SCHU 3046/1-2.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuch, S., Pütz, S. Mood state and conflict adaptation: an update and a diffusion model analysis. Psychological Research 85, 322–344 (2021). https://doi.org/10.1007/s00426-019-01258-3

Download citation