Gaze interaction: anticipation-based control of the gaze of others

Abstract

Gaze control is an important component of social communication, e.g. to direct someone’s attention. While previous research on gaze interaction has mainly focused on the gaze recipient by asking how humans respond to perceived gaze (gaze cueing), we address the actor’s point of view by asking how actors control their own eye movements to trigger a gaze response in others. Specifically, we investigate whether gaze responses of a (virtual) interaction partner are anticipated and thereby affect oculomotor control. Building on a pre-established paradigm for addressing anticipation-based motor control in non-social contexts, participants were instructed to alternately look at two faces on the screen, which consistently responded to the participant’s gaze with either direct or averted gaze. We tested whether this gaze response of the targeted face is already anticipated prior to the participant’s eye movement by displaying a task-irrelevant visual stimulus (prior to the execution of the target saccade), which was either congruent, incongruent, or unrelated to the subsequently perceived gaze. In addition to schematic and photographic faces, we included conditions involving changes in non-social objects. Overall, we observed congruency effects (as an indicator of anticipation of the virtual other’s gaze response to one’s own gaze) for both social and non-social stimuli, but only when the perceived changes were sufficiently salient. Temporal dynamics of the congruency effects were comparable for social and non-social stimuli, suggesting that similar mechanisms underlie anticipation-based oculomotor control. The results support recent theoretical claims emphasizing the role of anticipation-based action control in social interaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    A stronger, more natural form of controlling another's gaze with our own gaze would probably be a setting in which a participant freely chooses to move his/her eyes (instead of being instructed by means of an auditory imperative stimulus) in order to guide the gaze of another person into a certain direction or to a certain object. However, the present study was based on a previous established paradigm and designed to address anticipation-based oculomotor control under maximally controlled conditions.

  2. 2.

    Note that we recruited 105 participants, but excluded data of four participants with an unusual high error rate (> 30% in at least one cell of the design). Additionally, the data of one participant was removed from analysis due to an eye tracking error.

  3. 3.

    For the sake of completeness, we also report the respective analyses for Experiments 1, 3 and 5. In Experiment 1 (upright face stimuli), neither the effect of experiment half, F(1, 19) = 2.57, p = 0.125, ƞ 2p  = 0.12, nor the three-way interaction of congruency, SOA, and experiment half, F(2, 38) = 1.28, p = 0.290, ƞ 2p  = 0.06, or any other relevant interaction revealed significant results (all Fs < 1). In Experiment 3 (inverted face stimuli) participants responded faster in the first versus second half of the experiment, F(1, 19) = 11.77, p = 0.003, ƞ 2p  = 0.38. None of the other relevant interactions were significant, neither the interaction of congruency and experiment half, F(2, 38) = 1.85, p = 0.172, ƞ 2p  = 0.08, nor the three-way interaction of congruency, direction, and experiment half, F(2, 38) = 1.66, p = 0.204, ƞ 2p  = 0.08, or the interaction of congruency, SOA, and experiment half, F(2, 38) = 2.36, p = 0.108, ƞ 2p  = 0.11. The four-way interaction was not significant, F < 1. In Experiment 5 (scrambled face stimuli) no effect of experiment half was present, F(1, 19) = 2.30, p = 0.146, ƞ 2p  = 0.11. The four-way interaction was significant, F(2, 38) = 3.54, p = 0.039, ƞ 2p  = 0.16. None of the remaining relevant interaction effects was significant (all Fs < 1, except for the three-way interaction of congruency, SOA, and experiment half, F(2, 38) = 2.96, p = 0.064, ƞ 2p  = 0.14).

  4. 4.

    Please note that none of the statistical comparisons revealed significant results (all Fs < 1) when conducting a two-way repeated measures ANOVA with the factors task-irrelevant stimulus (direct gaze vs. averted gaze direction in Experiments 1 and 3; central vs. lateral effect direction in Experiment 5) and congruency (congruent vs. incongruent) separately for Experiments 1, 3, and 5.

  5. 5.

    Note that we only report statistical comparisons involving the factor experiment for the between-experiment comparisons.

  6. 6.

    We additionally addressed our claim that overall saliency of the gaze is reduced for photographic versus non-photographic stimuli empirically: In two short additional experiments, we compared the detection rate of direct vs. averted (left/right) gaze for photographic (upright and inverted) face stimuli to the detection rate of direct vs. averted (left/right) gaze for schematic face and central vs. lateral effects for abstract stimuli using the stimulus material from the current study. Participants either saw a stimulus presented for 35 ms at the screen center followed by a random pattern mask (scrambled version of the preceding stimulus) (Experiment A), or saw a printout of the stimuli (stimulus width × height: 2.0 cm × 2.6 cm) at a fixed viewing distance that was large enough to prevent perfect stimulus classification (3.35 m, Experiment B). Participants had to indicate the (gaze) orientation of the presented stimulus (left vs. direct/central vs. right, using randomized stimulus placement). The results confirmed our hypothesis that (gaze) orientation saliency is higher for non-photographic stimuli compared to photographic stimuli, as detection rate was higher for the abstract and schematic face stimuli compared to the photographic upright and inverted stimuli, t(19) = 6.85, p < 0.001, d = 1.53 (in Experiment A), and t(19) = 6.51, p < 0.001, d = 1.46 (in Experiment B).

References

  1. Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60(1), 34–43. https://doi.org/10.1027/1618-3169/a000171.

    Article  PubMed  Google Scholar 

  2. Bertelson, P. (1967). The time course of preparation. The Quarterly Journal of Experimental Psychology, 19(3), 272–279. https://doi.org/10.1080/14640746708400102.

    Article  PubMed  Google Scholar 

  3. Bertelson, P., & Tisseyre, F. (1969). The time-course of preparation: Confirmatory results with visual and auditory warning signals. Acta Psychologica, 30, 145–154. https://doi.org/10.1016/0001-6918(69)90047-X.

    Article  Google Scholar 

  4. Birmingham, E., Ristic, J., & Kingstone, A. (2012). Investigating social attention: A case for increasing stimulus complexity in the laboratory. In J. A. Burack, J. T. Enns, & N. A. Fox (Eds.), Cognitive Neuroscience, Development, and Psychopathology (pp. 251–276). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195315455.003.0010

  5. Böckler, A., van der Wel, R. P. R. D., & Welsh, T. N. (2014). Catching eyes: Effects of social and nonsocial cues on attention capture. Psychological Science, 25(3), 720–727. https://doi.org/10.1177/0956797613516147.

    Article  PubMed  Google Scholar 

  6. Böckler, A., van der Wel, R. P. R. D., & Welsh, T. N. (2015). Eyes only? Perceiving eye contact is neither sufficient nor necessary for attentional capture by face direction. Acta Psychologica, 160, 134–140. https://doi.org/10.1016/j.actpsy.2015.07.009.

    Article  PubMed  Google Scholar 

  7. Bompas, A., Hedge, C., & Sumner, P. (2017). Speeded saccadic and manual visuo-motor decisions: Distinct processes but same principles. Cognitive Psychology, 94, 26–52. https://doi.org/10.1016/j.cogpsych.2017.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyer, T. W., & Wang, M. (2018). Direct gaze, eye movements, and covert and overt social attention processes. Attention, Perception & Psychophysics, 80(7), 1654–1659. https://doi.org/10.3758/s13414-018-1590-z.

    Article  Google Scholar 

  9. Bruce, V., & Langton, S. (1994). The use of pigmentation and shading information in recognising the sex and identities of faces. Perception, 23(7), 803–822. https://doi.org/10.1068/p230803.

    Article  PubMed  Google Scholar 

  10. Bucker, B., Silvis, J. D., Donk, M., & Theeuwes, J. (2015). Reward modulates oculomotor competition between differently valued stimuli. Vision Research, 108, 103–112. https://doi.org/10.1016/j.visres.2015.01.020.

    Article  PubMed  Google Scholar 

  11. Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Representing the hyphen in action-effect associations: Automatic acquisition and bidirectional retrieval of action-effect intervals. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(6), 1701–1712. https://doi.org/10.1037/xlm0000022.

    Article  PubMed  Google Scholar 

  12. Driver, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., & Baron-Cohen, S. (1999). Gaze perception triggers reflexive visuospatial orienting. Vis Cognit, 6(5), 509–540. https://doi.org/10.1080/135062899394920.

    Article  Google Scholar 

  13. Dunne, S., Ellison, A., & Smith, D. T. (2015). Rewards modulate saccade latency but not exogenous spatial attention. Frontiers in Psychology, 6, 1080. https://doi.org/10.3389/fpsyg.2015.01080.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240. https://doi.org/10.1037/0096-1523.27.1.229.

    Article  PubMed  Google Scholar 

  15. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146.

    Article  PubMed  Google Scholar 

  16. Findlay, J. M., & Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 22(4), 661–674.

    Article  Google Scholar 

  17. Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490–495. https://doi.org/10.3758/BF03208827.

    Article  Google Scholar 

  18. Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724. https://doi.org/10.1037/0033-2909.133.4.694.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Graefe, T. M., & Vaughan, J. (1978). Saccadic and manual reaction times to stimuli initiated by eye or finger movements. Bulletin of the Psychonomic Society, 11(2), 97–99. https://doi.org/10.3758/bf03336776.

    Article  Google Scholar 

  20. Harleß, E. (1861). Der Apparat des Willens [The apparatus of the will]. Zeitschrift für Philosophie und philosophische Kritik, 38, 50–73.

    Google Scholar 

  21. Hayward, D. A., Voorhies, W., Morris, J. L., Capozzi, F., & Ristic, J. (2017). Staring reality in the face: A comparison of social attention across laboratory and real world measures suggests little common ground. Canadian Journal of Experimental Psychology, 71(3), 212–225. https://doi.org/10.1037/cep0000117.

    Article  PubMed  Google Scholar 

  22. Heider, F. (1977). Psychologie der interpersonalen Beziehungen [The psychology of interpersonal relations] (G. Deffner, Trans.). Stuttgart, Germany: Klett. (Original work published 1958)

  23. Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik, und Mathematik. [Psychology as a science newly founded on experience, metaphysicy, and mathematics]. Königsberg: Unzer.

  24. Herwig, A. (2015). Linking perception and action by structure or process? Toward an integrative perspective. Neuroscience and Biobehavioral Reviews, 52, 105–116. https://doi.org/10.1016/j.neubiorev.2015.02.013.

    Article  PubMed  Google Scholar 

  25. Herwig, A., & Horstmann, G. (2011). Action-effect associations revealed by eye movements. Psychonomic Bulletin & Review, 18(3), 531–537. https://doi.org/10.3758/s13423-011-0063-3.

    Article  Google Scholar 

  26. Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143(5), 1903–1922. https://doi.org/10.1037/a0036781.

    Article  Google Scholar 

  27. Herwig, A., & Waszak, F. (2012). Action-effect bindings and ideomotor learning in intention- and stimulus-based actions. Frontiers in Psychology, 3, 444. https://doi.org/10.3389/fpsyg.2012.00444.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. Current Biology: CB, 22(7), R219–R220. https://doi.org/10.1016/j.cub.2012.02.007.

    Article  PubMed  Google Scholar 

  29. Hietanen, J. K., & Leppänen, J. M. (2003). Does facial expression affect attention orienting by gaze direction cues? Journal of Experimental Psychology: Human Perception and Performance, 29(6), 1228–1243. https://doi.org/10.1037/0096-1523.29.6.1228.

    Article  PubMed  Google Scholar 

  30. Hommel, B., Alonso, D., & Fuentes, L. (2003). Acquisition and generalization of action effects. Visual Cognition, 10(8), 965–986. https://doi.org/10.1080/13506280344000176.

    Article  Google Scholar 

  31. Huestegge, L. (2011). The role of saccades in multitasking: Towards an output-related view of eye movements. Psychological Research, 75(6), 452–465. https://doi.org/10.1007/s00426-011-0352-5.

    Article  PubMed  Google Scholar 

  32. Huestegge, L., & Adam, J. J. (2011). Oculomotor interference during manual response preparation: Evidence from the response-cueing paradigm. Attention, Perception & Psychophysics, 73(3), 702–707. https://doi.org/10.3758/s13414-010-0051-0.

    Article  Google Scholar 

  33. Huestegge, L., Herbort, O., Gosch, N., Kunde, W., & Pieczykolan, A. (2019). Free-choice saccades and their underlying determinants: Explorations of high-level voluntary oculomotor control. Journal of Vision, 19(3), 14. https://doi.org/10.1167/19.3.14.

    Article  PubMed  Google Scholar 

  34. Huestegge, L., & Koch, I. (2010). Fixation disengagement enhances peripheral perceptual processing: Evidence for a perceptual gap effect. Experimental Brain Research, 201(4), 631–640. https://doi.org/10.1007/s00221-009-2080-2.

    Article  PubMed  Google Scholar 

  35. Huestegge, L., & Koch, I. (2013). Constraints in task-set control: Modality dominance patterns among effector systems. Journal of Experimental Psychology: General, 142(3), 633–637. https://doi.org/10.1037/a0030156.

    Article  Google Scholar 

  36. Huestegge, L., & Kreutzfeldt, M. (2012). Action effects in saccade control. Psychonomic Bulletin & Review, 19(2), 198–203. https://doi.org/10.3758/s13423-011-0215-5.

    Article  Google Scholar 

  37. Huestegge, L., Pieczykolan, A., & Koch, I. (2014). Talking while looking: On the encapsulation of output system representations. Cognitive Psychology, 73, 72–91. https://doi.org/10.1016/j.cogpsych.2014.06.001.

    Article  PubMed  Google Scholar 

  38. James, W. (1890). The principles of psychology. New York: Henry Holt.

    Google Scholar 

  39. Joyce, K., Schenke, K., Bayliss, A., & Bach, P. (2016). Looking ahead: Anticipatory cueing of attention to objects others will look at. Cognitive Neuroscience, 7(1–4), 74–81. https://doi.org/10.1080/17588928.2015.1053443.

    Article  PubMed  Google Scholar 

  40. Kiesel, A., & Hoffmann, J. (2004). Variable action effects: Response control by context-specific effect anticipations. Psychological Research, 68(2–3), 155–162. https://doi.org/10.1007/s00426-003-0152-7.

    Article  PubMed  Google Scholar 

  41. Kingstone, A., Friesen, C. K., & Gazzaniga, M. S. (2000). Reflexive joint attention depends on lateralized cortical connections. Psychological Science, 11(2), 159–166. https://doi.org/10.1111/1467-9280.00232.

    Article  PubMed  Google Scholar 

  42. Kingstone, A., & Klein, R. M. (1993). Visual offsets facilitate saccadic latency: Does predisengagement of visuospatial attention mediate this gap effect? Journal of Experimental Psychology. Human Perception and Performance, 19(6), 1251–1265. https://doi.org/10.1037/0096-1523.19.6.1251.

    Article  PubMed  Google Scholar 

  43. Kuhn, G., & Benson, V. (2007). The influence of eye-gaze and arrow pointing distractor cues on voluntary eye movements. Perception & Psychophysics, 69(6), 966–971. https://doi.org/10.3758/BF03193934.

    Article  Google Scholar 

  44. Kuhn, G., & Kingstone, A. (2009). Look away! Eyes and arrows engage oculomotor responses automatically. Attention, Perception & Psychophysics, 71(2), 314–327. https://doi.org/10.3758/APP.71.2.314.

    Article  Google Scholar 

  45. Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387–394. https://doi.org/10.1037/0096-1523.27.2.387.

    Article  PubMed  Google Scholar 

  46. Kunde, W., Weller, L., & Pfister, R. (2018). Sociomotor action control. Psychonomic Bulletin & Review, 25(3), 917–931. https://doi.org/10.3758/s13423-017-1316-6.

    Article  Google Scholar 

  47. Lachat, F., Conty, L., Hugueville, L., & George, N. (2012). Gaze cueing effect in a face-to-face situation. Journal of Nonverbal Behavior, 36(3), 177–190. https://doi.org/10.1007/s10919-012-0133-x.

    Article  Google Scholar 

  48. Langton, S. R., & Bruce, V. (1999). Reflexive visual orienting in response to the social attention of others. Visual Cognition, 6(5), 541–567. https://doi.org/10.1080/135062899394939.

    Article  Google Scholar 

  49. Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418(6896), 413–417. https://doi.org/10.1038/nature00892.

    Article  PubMed  Google Scholar 

  50. Los, S. A., & Schut, M. L. J. (2008). The effective time course of preparation. Cognitive Psychology, 57(1), 20–55. https://doi.org/10.1016/j.cogpsych.2007.11.001.

    Article  PubMed  Google Scholar 

  51. Mansfield, E., Farroni, T., & Johnson, M. (2003). Does gaze perception facilitate overt orienting? Visual Cognition, 10(1), 7–14. https://doi.org/10.1080/713756671.

    Article  Google Scholar 

  52. McCoy, B., & Theeuwes, J. (2016). Effects of reward on oculomotor control. Journal of Neurophysiology, 116(5), 2453–2466. https://doi.org/10.1152/jn.00498.2016.

    Article  PubMed  Google Scholar 

  53. Milstein, D. M., & Dorris, M. C. (2007). The influence of expected value on saccadic preparation. The Journal of Neuroscience, 27(18), 4810–4818. https://doi.org/10.1523/JNEUROSCI.0577-07.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mitchell, J. P. (2009). Social psychology as a natural kind. Trends in Cognitive Sciences, 13(6), 246–251. https://doi.org/10.1016/j.tics.2009.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Näsänen, R., Ojanpää, H., & Kojo, I. (2001). Effect of stimulus contrast on performance and eye movements in visual search. Vision Research, 41(14), 1817–1824. https://doi.org/10.1016/S0042-6989(01)00056-6.

    Article  PubMed  Google Scholar 

  56. Pfeiffer, U. J., Vogeley, K., & Schilbach, L. (2013). From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural correlates of gaze in social interaction. Neuroscience and Biobehavioral Reviews, 37, 2516–2528. https://doi.org/10.1016/j.neubiorev.2013.07.017.

    Article  PubMed  Google Scholar 

  57. Pfeuffer, C. U., Kiesel, A., & Huestegge, L. (2016). A look into the future: Spontaneous anticipatory saccades reflect processes of anticipatory action control. Journal of Experimental Psychology: General, 145(11), 1530–1547. https://doi.org/10.1037/xge0000224.

    Article  Google Scholar 

  58. Pfister, R. (2019). Effect-based action control with body-related effects: Implications for em-pirical approaches to ideomotor action control. Psychological Review, 126(1), 153–161. https://doi.org/10.1037/rev0000140.

    Article  PubMed  Google Scholar 

  59. Pfister, R., Dignath, D., Hommel, B., & Kunde, W. (2013). It takes two to imitate: Anticipation and imitation in social interaction. Psychological Science, 24(10), 2117–2121. https://doi.org/10.1177/0956797613489139.

    Article  PubMed  Google Scholar 

  60. Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: Action-effect learning for stimulus-based actions. Psychological Research, 75(1), 61–65. https://doi.org/10.1007/s00426-010-0288-1.

    Article  PubMed  Google Scholar 

  61. Pfister, R., Weller, L., Dignath, D., & Kunde, W. (2017). What or when? The impact of anticipated social action effects is driven by action-effect compatibility, not delay. Attention, Perception & Psychophysics, 79(7), 2132–2142. https://doi.org/10.3758/s13414-017-1371-0.

    Article  Google Scholar 

  62. Pieczykolan, A., & Huestegge, L. (2014). Oculomotor dominance in multitasking: Mechanisms of conflict resolution in cross-modal action. Journal of Vision, 14(13), 1–17. https://doi.org/10.1167/14.13.18.

    Article  Google Scholar 

  63. Pieczykolan, A., & Huestegge, L. (2017). Cross-modal action complexity: Action- and rule-related memory retrieval in dual-response control. Frontiers in Psychology, 8, 529. https://doi.org/10.3389/fpsyg.2017.00529.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Redcay, E., Dodell-Feder, D., Pearrow, M. J., Mavros, P. L., Kleiner, M., Gabrieli, J. D. E., & Saxe, R. (2010). Live face-to-face interaction during fMRI: A new tool for social cognitive neuroscience. NeuroImage, 50(4), 1639–1647. https://doi.org/10.1016/j.neuroimage.2010.01.052.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ricciardelli, P., Baylis, G., & Driver, J. (2000). The positive and negative of human expertise in gaze perception. Cognition, 77(1), B1–B14. https://doi.org/10.1016/S0010-0277(00)00092-5.

    Article  PubMed  Google Scholar 

  66. Riechelmann, E., Pieczykolan, A., Horstmann, G., Herwig, A., & Huestegge, L. (2017). Spatio-temporal dynamics of action-effect associations in oculomotor control. Acta Psychologica, 180, 130–136. https://doi.org/10.1016/j.actpsy.2017.09.003.

    Article  PubMed  Google Scholar 

  67. Riechelmann, E., Weller, L., Huestegge, L., Böckler, A., Pfister, R. (2019). Revisiting intersubjective action-effect binding: No evidence for social moderators. Attention, Perception, and Psychophysics. Advance online publication. https://doi.org/10.3758/s13414-019-01715-6

  68. Ristic, J., Friesen, C. K., & Kingstone, A. (2002). Are eyes special? It depends on how you look at it. Psychonomic Bulletin & Review, 9(3), 507–513. https://doi.org/10.3758/BF03196306.

    Article  Google Scholar 

  69. Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252–256. https://doi.org/10.1038/nn.2711.

    Article  PubMed  Google Scholar 

  70. Rothkirch, M., Ostendorf, F., Sax, A.-L., & Sterzer, P. (2013). The influence of motivational salience on saccade latencies. Experimental Brain Research, 224(1), 35–47. https://doi.org/10.1007/s00221-012-3284-4.

    Article  PubMed  Google Scholar 

  71. Saslow, M. G. (1967). Latency for Saccadic Eye Movement. Journal of the Optical Society of America, 57(8), 1030. https://doi.org/10.1364/JOSA.57.001030.

    Article  PubMed  Google Scholar 

  72. Sato, A., & Itakura, S. (2013). Intersubjective action-effect binding: Eye contact modulates acquisition of bidirectional association between our and others’ actions. Cognition, 127(3), 383–390. https://doi.org/10.1016/j.cognition.2013.02.010.

    Article  PubMed  Google Scholar 

  73. Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers in Human Neuroscience, 8, 278. https://doi.org/10.3389/fnhum.2014.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393–414. https://doi.org/10.1017/S0140525X12000660.

    Article  Google Scholar 

  75. Schütz, A. C., Trommershäuser, J., & Gegenfurtner, K. R. (2012). Dynamic integration of information about salience and value for saccadic eye movements. Proceedings of the National academy of Sciences of the United States of America, 109(19), 7547–7552. https://doi.org/10.1073/pnas.1115638109.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Senju, A., & Johnson, M. H. (2009). The eye contact effect: Mechanisms and development. Trends in Cognitive Sciences, 13(3), 127–134. https://doi.org/10.1016/j.tics.2008.11.009.

    Article  PubMed  Google Scholar 

  77. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974. https://doi.org/10.1037/a0020541.

    Article  PubMed  Google Scholar 

  78. Slobodenyuk, N. (2016). Towards cognitively grounded gaze-controlled interfaces. Personal and Ubiquitous Computing, 20(6), 1035–1047. https://doi.org/10.1007/s00779-016-0970-4.

    Article  Google Scholar 

  79. Sprague, N., & Ballard, D. (2003). Eye movements for reward maximization. In S. Thrun, L. K. Saul, & B. Scholkopf (Eds.), Advances in neural information processing systems (pp. 1467–1474). Boston, MA: MIT Press.

    Google Scholar 

  80. Stephenson, L. J., Edwards, S. G., Howard, E. E., & Bayliss, A. P. (2018). Eyes that bind us: Gaze leading induces an implicit sense of agency. Cognition, 172, 124–133. https://doi.org/10.1016/j.cognition.2017.12.011

    Article  PubMed  Google Scholar 

  81. Theeuwes, J., & Belopolsky, A. V. (2012). Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–85. https://doi.org/10.1016/j.visres.2012.07.024.

    Article  PubMed  Google Scholar 

  82. Tipples, J. (2002). Eye gaze is not unique: Automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review, 9(2), 314–318.

    Article  Google Scholar 

  83. Tipples, J. (2005). Orienting to eye gaze and face processing. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 843–856. https://doi.org/10.1037/0096-1523.31.5.843.

    Article  PubMed  Google Scholar 

  84. Van der Wel, R. P., Welsh, T., & Böckler, A. (2018). Talking heads or talking eyes? Effects of head orientation and sudden onset gaze cues on attention capture. Attention, Perception & Psychophysics, 80(1), 1–6. https://doi.org/10.3758/s13414-017-1462-y.

    Article  Google Scholar 

  85. Vecera, S. P., & Johnson, M. H. (1995). Gaze detection and the cortical processing of faces: Evidence from infants and adults. Visual Cognition, 2(1), 59–87. https://doi.org/10.1080/13506289508401722.

    Article  Google Scholar 

  86. Verschoor, S. A., Spape, M., Biro, S., & Hommel, B. (2013). From outcome prediction to action selection: Developmental change in the role of action-effect bindings. Developmental Science, 16(6), 801–814. https://doi.org/10.1111/desc.12085.

    Article  PubMed  Google Scholar 

  87. Watanabe, K., Lauwereyns, J., & Hikosaka, O. (2003). Effects of motivational conflicts on visually elicited saccades in monkeys. Experimental Brain Research, 152(3), 361–367. https://doi.org/10.1007/s00221-003-1555-9.

    Article  PubMed  Google Scholar 

  88. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology: General, 81(1), 141–145. https://doi.org/10.1037/h0027474.

    Article  Google Scholar 

  89. Zaki, J., Kallman, S., Wimmer, G. E., Ochsner, K., & Shohamy, D. (2016). Social cognition as reinforcement learning: Feedback modulates emotion inference. Journal of Cognitive Neuroscience, 28(9), 1270–1282. https://doi.org/10.1162/jocn_a_00978.

    Article  PubMed  Google Scholar 

  90. Zaki, J., & Ochsner, K. (2009). The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences, 1167, 16–30. https://doi.org/10.1111/j.1749-6632.2009.04601.x.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ziessler, M., & Nattkemper, D. (2011). The temporal dynamics of effect anticipation in course of action planning. Quarterly Journal of Experimental Psychology (2006), 64(7), 1305–1326. https://doi.org/10.1080/17470218.2011.553067

Download references

Acknowledgements

We thank Romy Mueller and an anonymous reviewer for their comments on a previous draft of the manuscript, and for stimulating fruitful discussions.

Funding

This research was funded by Deutsche Forschungsgemeinschaft (DFG), HU1847/7-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Riechelmann.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Ethical approval

The present study involved human participants. All procedures performed in the present study were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riechelmann, E., Raettig, T., Böckler, A. et al. Gaze interaction: anticipation-based control of the gaze of others. Psychological Research 85, 302–321 (2021). https://doi.org/10.1007/s00426-019-01257-4

Download citation