Executive Functions and Visual-Spatial Skills Predict Mathematical Achievement: Asymmetrical Associations Across Age

Abstract

Children’s mathematical achievement depends on their domain-specific abilities and their domain-general skills such as executive functions (EFs) and visual-spatial skills (VSS). Research indicates that these two domain-general skills predict mathematical achievement. However, it is unclear whether these skills are differently associated with mathematical achievement across a large age range. The current cross-sectional study answered this question using a large, representative sample aged 5–20 years (N = 1754). EFs, VSS, and mathematical achievement were assessed using the Intelligence and Development Scales–2. Hierarchical regression analyses were computed with EFs and VSS as predictor variables and mathematical achievement as dependent variable. We examined (non-) linear effects and interactions of EFs and VSS with age. Results indicated that EFs and VSS were distinctly associated with mathematical achievement above and beyond effects of age, sex, maternal education, and verbal reasoning. Effects of EFs were linear and age-invariant. Effects of VSS were curvilinear and stronger in adolescents than in children. Our results indicated that EFs and VSS related differently to mathematical proficiency across age, suggesting a varying impact on mathematics across age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    According to the instructions, the task was stopped when participants answered incorrectly in five subsequent items. Consequently, in some subjects, the termination of the test could also have been caused by geometry items. In order to achieve a complete correction of the test results with regard to the contributions of the geometry items, we estimated latent mathematical ability scores based on a two-parametric item-response model with the data of the completed math items only. We excluded all geometry items from the model. In this latent variable approach, the interaction term VSS*age showed a tendency (p = 0.057). The size of the effect, however, appears only slightly reduced as compared to the analyses with geometry items (βwithout geometry = 0.057 vs. βwith geometry = 0.070). 

References

  1. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: testing and interpreting interactions. London: SAGE. https://doi.org/10.1037/10520-147.

    Google Scholar 

  2. Archibald, S. J., & Kerns, K. A. (1999). Identification and description of new tests of executive functioning in children. Child Neuropsychology, 5, 115–129.

    Article  Google Scholar 

  3. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section, 49A(1), 5–28. https://doi.org/10.1080/713755608.

    Article  Google Scholar 

  4. Baird, K. (2012). Class in the classroom: the relationship between school resources and math performance among low socioeconomic status students in 19 rich countries. Education Economics, 20(5), 484–509.

    Article  Google Scholar 

  5. Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36–41. https://doi.org/10.1111/cdep.12059.

    Article  Google Scholar 

  6. Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory. Developmental Psychology, 19(3), 273–293. https://doi.org/10.1207/S15326942DN1903_3.

    Article  Google Scholar 

  7. Casey, M., Nuttall, R., & Benbow, C. (1995). The influence of spatial ability on gender differences in mathematics college entrance test-scores across diverse samples. Developmental Psychology, 31(4), 697–705. https://doi.org/10.1037/0012-1649.31.4.697.

    Article  Google Scholar 

  8. Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63–68. https://doi.org/10.1016/j.tine.2013.12.001.

    Article  Google Scholar 

  9. Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12–26. https://doi.org/10.1016/j.cognition.2017.01.014.

    Article  PubMed  Google Scholar 

  10. Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. New York: Guilford Publications.

    Google Scholar 

  11. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. https://doi.org/10.1016/0010-0277(92)90049-N.

    Article  PubMed  Google Scholar 

  12. Di Stefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11.

    Google Scholar 

  13. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750.

    Article  PubMed  Google Scholar 

  14. Erziehungsdirektoren-Konferenz (D-EDK) (2013). Lehrplan 21, Mathematik (Konsultationsfassung). Luzern: D-EDK

  15. Field, A. (2013). Discovering Statistics Using SPSS (4th ed.). London: SAGE.

    Google Scholar 

  16. Frick, A. (2018). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research. https://doi.org/10.1007/s00426-018-1008-5. (Advance online publication).

    Article  PubMed  Google Scholar 

  17. Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child and Adolescent Psychiatry, 9, 11–16. https://doi.org/10.1007/s007870070004.

    Article  Google Scholar 

  18. Geary, D. C. (2011a). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Geary, D. C. (2011b). Cognitive predictors of achievement growth in mathematics: A five year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79–106. https://doi.org/10.1207/s15516709cog1401_5.

    Article  Google Scholar 

  21. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLOS One, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grieder, S., & Grob, A. (2019). Exploratory factor analysis of the intelligence and development scales–2: Implications for theory and practice. Assessment., 1, 1. https://doi.org/10.1177/1073191119845051. (Advance online publication).

    Article  Google Scholar 

  23. Grob, A., & Hagmann-von Arx, P. (2018). Intelligence and developmental Scales—2 (IDS-2). Bern: Hogrefe.

    Google Scholar 

  24. Grob, A., Meyer, C. S., & Hagmann-von Arx, P. (2009). Intelligence and Development Scales (IDS). Bern: Huber.

    Google Scholar 

  25. Gross, J., Hudson, C., & Price, D. (2009). The Long Term Costs of Numeracy Difficulties. London: Every Child a Chance Trust.

    Google Scholar 

  26. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433.

    Article  PubMed  Google Scholar 

  27. Hagmann-von Arx, P., Grob, A., Petermann, F., & Daseking, M. (2012). Konkurrente Validität des HAWIK-IV und der Intelligence and Development Scales (IDS). Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 40, 41–50. https://doi.org/10.1024/1422-4917/a000148.

    Article  PubMed  Google Scholar 

  28. Hagmann-von Arx, P., Meyer, C. S., & Grob, A. (2008). Assessing intellectual giftedness with the WISC-IV and the IDS. Journal of Psychology, 216, 173–180.

    Google Scholar 

  29. Hagmann-von Arx, P., Petermann, F., & Grob, A. (2013). Konvergente und diskriminante Validität der WISC-IV und der Intelligence and Development Scales (IDS) bei Kindern mit Migrationshintergrund. Diagnostica, 59, 170–182. https://doi.org/10.1026/0012-1924/a000091.

    Article  Google Scholar 

  30. Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2018). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 1–23.

    Google Scholar 

  31. Hoff, E. (2013). Interpreting the early language trajectories of children from low SES and language minority homes: Implications for closing achievement gaps. Developmental Psychology, 49(1), 4–14. https://doi.org/10.1037/a0027238.

    Article  PubMed  Google Scholar 

  32. Holmes, J., & Adams, J. W. (2006). Working Memory and Children’s Mathematical Skills: Implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339–366.

    Article  Google Scholar 

  33. Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills: Evidence from a large, Representative U.S. Sample. Psychological Science, 26(3), 302–310. https://doi.org/10.1177/0956797614563338.

    Article  PubMed  Google Scholar 

  34. Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86(1), 148–161.

    Article  Google Scholar 

  35. Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamaki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20, 65–76.

    Google Scholar 

  36. Lauer, J. E., & Lourenco, S. F. (2016). Spatial processing in infancy predicts both spatial and mathematical aptitude in childhood. Psychological Science, 27(10), 1291–1298. https://doi.org/10.1177/0956797616655977.

    Article  PubMed  Google Scholar 

  37. LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.

    Article  Google Scholar 

  38. Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80.

    Article  Google Scholar 

  39. Levine, S. C., Dulaney, A., Lourenco, S. F., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. WIREs Cognitive Science, 7, 127–155.

    Article  Google Scholar 

  40. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.

    Article  Google Scholar 

  41. Levine, S. C., Vasilyeva, M., Lourenco, S., Newcombe, N., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845.

    Article  Google Scholar 

  42. Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One, 8(7), e70160. https://doi.org/10.1371/journal.pone.0070160.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136(6), 1123–1135. https://doi.org/10.1037/a0021276.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Markey, S. M. (2010). The relationship between visual-spatial reasoning ability and math and geometry problem solving. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70, 7874.

    Google Scholar 

  45. McCrink, K., & Opfer, J. E. (2014). Development of spatial-numerical associations. Psychological Science, 23(6), 439–445. https://doi.org/10.1177/0963721414549751.

    Article  Google Scholar 

  46. Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. In J. B. Benson (Ed.), Advances in Child Development and Behavior (Vol. 42, pp. 197–243). San Diego: Elsevier Academic Press Inc. https://doi.org/10.1016/b978-0-12-394388-0.00006-x.

    Google Scholar 

  47. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). The latent structure of spatial skills and mathematics across development: Highly correlated but separate domains. JEP General, 145(9), 1206–1227.

    Google Scholar 

  48. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions. Current Directions in Psychological Science, 21(1), 8–14. https://doi.org/10.1006/cogp.1999.0734.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  Google Scholar 

  50. Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213–220. https://doi.org/10.1016/j.jecp.2015.01.005.

    Article  PubMed  Google Scholar 

  51. Neuenschwander, R., Röthlisberger, M., Cimeli, P., & Roebers, C. M. (2012). How do different aspects of self-regulation predict successful adaptation to school? Journal of Experimental Child Psychology, 113(3), 353–371. https://doi.org/10.1016/j.jecp.2012.07.004.

    Article  PubMed  Google Scholar 

  52. Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In Studying Visual and Spatial Reasoning for Design Creativity (p. 179–192). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9297-4_10

  53. O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690.

    Article  Google Scholar 

  54. Peng, P., Wang, T., Wang, C., & Lin, X. (2018). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145, 189–236.

    Article  Google Scholar 

  55. Röthlisberger, M., Neuenschwander, R., Cimeli, P., & Roebers, C. M. (2013). Executive functions in 5-to 8-year olds: Developmental changes and relationship to academic achievement. Journal of Educational and Developmental Psychology, 3, 153–167. https://doi.org/10.5539/jedp.v3n2p153.

    Article  Google Scholar 

  56. Röthlisberger, M., Neuenschwander, R., Michel, E., & Roebers, M. (2010). Exekutive Funktionen: Zugrundeliegende kognitive Prozesse und deren Korrelate bei Kindern im späten Vorschulalter. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42(2), 99–110.

    Article  Google Scholar 

  57. Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353. https://doi.org/10.1037/1040-3590.8.4.350.

    Article  Google Scholar 

  58. Stipek, D., & Valentino, R. A. (2015). Early childhood memory and attention as predictors of academic growth trajectories. Journal of Educational Psychology, 107(3), 771–788. https://doi.org/10.1037/edu0000004.

    Article  Google Scholar 

  59. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. https://doi.org/10.1037/h0054651.

    Article  Google Scholar 

  60. Van de Weijer-Bergsma, E., Kroesbergen, E., & Van Luit, J. H. (2015). Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Memory & Cognition, 43, 367–368.

    Article  Google Scholar 

  61. Van der Elst, W., Hurks, P., Wassenberg, R., Meijs, C., & Jolles, J. (2011). Animal verbal fluency and design fluency in school-aged children: Effects of age, sex, and mean level of parental education, and regression-based normative data. Journal of Clinical and Experimental Neuropsychology, 33(9), 1005–1015. https://doi.org/10.1080/13803395.2011.589509.

    Article  PubMed  Google Scholar 

  62. Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51. https://doi.org/10.1016/j.jecp.2014.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wechsler, D. (2003). Wechsler Intelligence Scale for Children (4th ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  64. Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173–180. https://doi.org/10.1080/02568540109594958.

    Article  Google Scholar 

  65. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749–750. https://doi.org/10.1038/358749a0.

    Article  PubMed  Google Scholar 

  66. Yeniad, N., Malda, M., Mesman, J., van IJzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1–9. https://doi.org/10.1016/j.lindif.2012.10.004.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Priska Hagmann-von Arx and Nora Newcombe for their input on the present research questions. Further, we thank our colleagues of the Division of Developmental and Personality Psychology for their helpful feedback during the brown bag meetings. A special thank goes to the research assistants who were in charge of data collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Kahl.

Ethics declarations

Conflict of interest

The authors declare that they had no conflicts of interest with respect to their authorship or the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahl, T., Grob, A., Segerer, R. et al. Executive Functions and Visual-Spatial Skills Predict Mathematical Achievement: Asymmetrical Associations Across Age. Psychological Research 85, 36–46 (2021). https://doi.org/10.1007/s00426-019-01249-4

Download citation