Humans derive task expectancies from sub-second and supra-second interval durations

Abstract

Recent studies in the field of task switching have shown that humans can base expectancies for tasks on temporal cues. When tasks are predictable based on the duration of the preceding pre-target interval, humans implicitly adapt to this predictability, indicated by better performance in trials with validly compared to invalidly predicted tasks. Yet, it is not clear which internal timing mechanisms are involved. Previous research has suggested that intervals from the sub- and supra-second range are processed by distinct cognitive timing systems. As earlier studies on temporally predictable task switching have used predictive intervals stemming from both ranges, it was not yet clear if the time-based expectancy effect was driven by just one of the two internal timing systems. The present study used clearly sub-second intervals (10 ms and 500 ms) in Experiment 1, while clearly supra-second intervals (1500 ms and 3000 ms) were used in Experiment 2. Substantial adaptation effects were observed in both experiments, showing that sub- as well as supra-second timing systems are involved in time-based expectancies for tasks. The present findings offer important implications for our theoretical understanding of the internal timing mechanisms involved in time-based task expectancy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Concerning time-based expectancy in the context of ordered task sequences, it should be noted that a recent study (Mittelstädt, Kiesel, Fischer, Rieger and Thomaschke, in revision) investigated time-based expectancy in a dual-task paradigm. The authors found that the backward-compatibility effect between tasks was reduced when incompatible dual-task trials were predicted by one of two possible FPs with a high degree of probability.

References

  1. Altmann, E. M. (2005). Repetition priming in task switching: Do the benefits dissipate? Psychonomic Bulletin & Review, 12, 535–540.

    Article  Google Scholar 

  2. Aufschnaiter, S., Kiesel, A., Dreisbach, G., Wenke, D., & Thomaschke, R. (2018a). Time-based expectancy in temporally structured task switching. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 856–870.

    Google Scholar 

  3. Aufschnaiter, S., Kiesel, A., & Thomaschke, R. (2018b). Transfer of time-based task expectancy across different timing environments. Psychological Research, 82(1), 230–243.

    PubMed  Article  Google Scholar 

  4. Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3(10), 594–597.

    PubMed  Article  Google Scholar 

  5. Buonomano, D. V. (2014). The neural mechanisms of timing on short timescales. In V. Arstila, & D. Lloyd (Ed.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 329–342). Cambridge: MIT.

    Google Scholar 

  6. Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation. Psychological Bulletin, 113(3), 566–579.

    PubMed  Article  Google Scholar 

  7. Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582–593.

    Article  Google Scholar 

  8. De Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 357–376). Cambridge: MIT.

    Google Scholar 

  9. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.

    Article  Google Scholar 

  10. Dreisbach, G., Haider, H., & Kluwe, R. H. (2002). Preparatory processes in the Task-Switching paradigm: Evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 468–483.

    PubMed  Google Scholar 

  11. Gooch, C. M., Wiener, M., Hamilton, A. C., & Coslett, H. (2011). Temporal discrimination of sub-and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 59.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.

    Article  Google Scholar 

  13. Hayashi, M. J., Kantele, M., Walsh, V., Carlson, S., & Kanai, R. (2014). Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8), 1685–1693.

    PubMed  Article  Google Scholar 

  14. Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386.

    PubMed  Article  Google Scholar 

  15. Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874.

    PubMed  PubMed Central  Article  Google Scholar 

  17. Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51(3), 179–184.

    PubMed  Article  Google Scholar 

  18. Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1474–1486.

    PubMed  Google Scholar 

  19. Koch, I. (2003). The role of external cues for endogenous advance reconfiguration in task switching. Psychonomic Bulletin & Review, 10, 488–492.

    Article  Google Scholar 

  20. Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.

    Article  Google Scholar 

  21. Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. New York: Cambridge University Press.

    Google Scholar 

  23. Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia, 41(12), 1583–1592.

    PubMed  Article  Google Scholar 

  24. Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255.

    PubMed  Article  Google Scholar 

  25. Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71(2–3), 226–234.

    PubMed  Article  Google Scholar 

  26. Los, S. A., & Agter, F. (2005). Reweighting sequential effects across different distributions of foreperiods: Segregating elementary contributions to nonspecific preparation. Perception and Psychophysics, 67(7), 1161–1170.

    PubMed  Article  Google Scholar 

  27. Los, S. A., & Horoufchin, H. (2011). Dissociative patterns of foreperiod effects in temporal discrimination and reaction time tasks. Quarterly Journal of Experimental Psychology, 64(5), 1009–1020.

    Article  Google Scholar 

  28. Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106, 121–145.

    PubMed  Article  Google Scholar 

  29. Los, S. A., & Schut, M. L. (2008). The effective time course of preparation. Cognitive Psychology, 57(1), 20–55.

    PubMed  Article  Google Scholar 

  30. Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241–265.

    PubMed  Article  Google Scholar 

  31. Merchant, H., & de Lafuente, V. (2014). Introduction to the neurobiology of interval timing. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.

    Google Scholar 

  32. Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.

    PubMed  Article  Google Scholar 

  33. Mittelstädt, V., Kiesel, A., Fischer, R., Rieger, T., & Thomaschke, R. (in revision). Temporal predictability of between-task interference in dual-tasking. Foreperiods as contextual cues modulate the backward compatibility effect.

  34. Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461–470.

    PubMed  Article  Google Scholar 

  35. Nieuwenhuis, S., & Monsell, S. (2002). Residual costs in task switching: Testing the failure-to-engage hypothesis. Psychonomic Bulletin & Review, 9, 86–92.

    Article  Google Scholar 

  36. Rammsayer, T. (2008). Neuropharmalogical approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley: Emerald.

    Google Scholar 

  37. Rammsayer, T. (2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. NeuroQuantology, 7(1), 103–113.

    Article  Google Scholar 

  38. Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8(2), 270–277.

    Article  Google Scholar 

  39. Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120(2), 141–171.

    PubMed  Article  Google Scholar 

  40. Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565–574.

    Article  Google Scholar 

  41. Rammsayer, T. H., & Troche, S. J. (2014). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.

    Google Scholar 

  42. Rieth, C. A., & Huber, D. E. (2013). Implicit learning of spatiotemporal contingencies in spatial cueing. Journal of experimental psychology: Human Perception and Performance, 39(4), 1165–1180.

    PubMed  Google Scholar 

  43. Roberts, F., & Francis, A. L. (2013). Identifying a temporal threshold of tolerance for silent gaps after requests. The Journal of the Acoustical Society of America, 133(6), 471–477.

    Article  Google Scholar 

  44. Roberts, F., Margutti, P., & Takano, S. (2011). Judgments concerning the valence of inter-turn silence across speakers of American English, Italian, and Japanese. Discourse Processes, 48(5), 331–354.

    Article  Google Scholar 

  45. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  46. Schneider, D. W., & Logan, G. D. (2006). Hierarchical control of cognitive processes: Switching tasks in sequences. Journal of Experimental Psychology: General, 135(4), 623–640.

    Article  Google Scholar 

  47. Schröter, H., Birngruber, T., Bratzke, D., Miller, J., & Ulrich, R. (2015). Task predictability influences the variable foreperiod effect: Evidence of task-specific temporal preparation. Psychological Research, 79(2), 230–237.

    PubMed  Article  Google Scholar 

  48. Smith, J. B. (1974). Effects of response rate, reinforcement frequency, and the duration of a stimulus preceding response-independent food. Journal of the Experimental Analysis of Behavior, 21(2), 215–221.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Steinborn, M. B., & Langner, R. (2011). Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychologica, 136(3), 405–418.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Steinborn, M. B., & Langner, R. (2012). Arousal modulates temporal preparation under increased time uncertainty: Evidence from higher-order sequential foreperiod effects. Acta Psychologica, 139(1), 65–76.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Steinborn, M. B., Langner, R., & Huestegge, L. (2017). Mobilizing cognition for speeded action: Try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological research, 81(6), 1135–1151.

    PubMed  Article  Google Scholar 

  52. Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129(2), 297–307.

    PubMed  Article  Google Scholar 

  53. Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2009). Dynamic adjustment of temporal preparation: Shifting warning signal modality attenuates the sequential foreperiod effect. Acta Psychologica, 132(1), 40–47.

    PubMed  Article  Google Scholar 

  54. Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2010). The effect of a cross-trial shift of auditory warning signals on the sequential foreperiod effect. Acta Psychologica, 134(1), 94–104.

    PubMed  Article  Google Scholar 

  55. Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 1335–1340.

    PubMed  Article  Google Scholar 

  56. Thomaschke, R., & Dreisbach, G. (2015). The time-event correlation effect is due to temporal expectancy, not to partial transition costs. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 196–218.

    PubMed  PubMed Central  Google Scholar 

  57. Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task relevant stimulus features. Timing & Time Perception, 4, 248–270.

    Article  Google Scholar 

  58. Thomaschke, R., Kiesel, A., & Hoffmann, J. (2011). Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 2309–2322.

    Article  Google Scholar 

  59. Thomaschke, R., Kunchulia, M., & Dreisbach, G. (2015). Time-based event expectations employ relative, not absolute, representations of time. Psychonomic Bulletin & Review, 22, 890–895.

    Article  Google Scholar 

  60. Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011a). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 953–964.

    Article  Google Scholar 

  61. Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011b). The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. The Quarterly Journal of Experimental Psychology, 64, 2289–2300.

    PubMed  Article  Google Scholar 

  62. Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs: General and Applied, 77(13), 1–31.

    Article  Google Scholar 

  63. Volberg, G., & Thomaschke, R. (2017). Time-based expectations entail preparatory motor activity. Cortex, 92, 261–270.

    PubMed  Article  Google Scholar 

  64. Wagener, A., & Hoffmann, J. (2010). Temporal cueing of target-identity and target-location. Experimental Psychology, 57(6), 436–445.

    PubMed  Article  Google Scholar 

  65. Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18(5), 910–916.

    Article  Google Scholar 

  66. Wiener, M., Lohoff, F. W., & Coslett, H. B. (2011). Double dissociation of dopamine genes and timing in humans. Journal of Cognitive Neuroscience, 23(10), 2811–2821.

    PubMed  Article  Google Scholar 

  67. Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. Neuroimage, 49(2), 1728–1740.

    PubMed  Article  Google Scholar 

  68. Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant within the Priority Program, SPP 1772 from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant no TH 1554/3-1. We thank Sander Los and Michael Steinborn for many helpful comments on an earlier version of the article. Raw data of the reported experiments are available via the Open Science Framework: https://osf.io/z8mvj/, https://doi.org/10.17605/osf.io/z8mvj.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefanie Aufschnaiter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aufschnaiter, S., Kiesel, A. & Thomaschke, R. Humans derive task expectancies from sub-second and supra-second interval durations. Psychological Research 84, 1333–1345 (2020). https://doi.org/10.1007/s00426-019-01155-9

Download citation