Skip to main content
Log in

Humans derive task expectancies from sub-second and supra-second interval durations

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Recent studies in the field of task switching have shown that humans can base expectancies for tasks on temporal cues. When tasks are predictable based on the duration of the preceding pre-target interval, humans implicitly adapt to this predictability, indicated by better performance in trials with validly compared to invalidly predicted tasks. Yet, it is not clear which internal timing mechanisms are involved. Previous research has suggested that intervals from the sub- and supra-second range are processed by distinct cognitive timing systems. As earlier studies on temporally predictable task switching have used predictive intervals stemming from both ranges, it was not yet clear if the time-based expectancy effect was driven by just one of the two internal timing systems. The present study used clearly sub-second intervals (10 ms and 500 ms) in Experiment 1, while clearly supra-second intervals (1500 ms and 3000 ms) were used in Experiment 2. Substantial adaptation effects were observed in both experiments, showing that sub- as well as supra-second timing systems are involved in time-based expectancies for tasks. The present findings offer important implications for our theoretical understanding of the internal timing mechanisms involved in time-based task expectancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Concerning time-based expectancy in the context of ordered task sequences, it should be noted that a recent study (Mittelstädt, Kiesel, Fischer, Rieger and Thomaschke, in revision) investigated time-based expectancy in a dual-task paradigm. The authors found that the backward-compatibility effect between tasks was reduced when incompatible dual-task trials were predicted by one of two possible FPs with a high degree of probability.

References

  • Altmann, E. M. (2005). Repetition priming in task switching: Do the benefits dissipate? Psychonomic Bulletin & Review, 12, 535–540.

    Article  Google Scholar 

  • Aufschnaiter, S., Kiesel, A., Dreisbach, G., Wenke, D., & Thomaschke, R. (2018a). Time-based expectancy in temporally structured task switching. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 856–870.

    Google Scholar 

  • Aufschnaiter, S., Kiesel, A., & Thomaschke, R. (2018b). Transfer of time-based task expectancy across different timing environments. Psychological Research, 82(1), 230–243.

    Article  PubMed  Google Scholar 

  • Buonomano, D. V. (2007). The biology of time across different scales. Nature Chemical Biology, 3(10), 594–597.

    Article  PubMed  Google Scholar 

  • Buonomano, D. V. (2014). The neural mechanisms of timing on short timescales. In V. Arstila, & D. Lloyd (Ed.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 329–342). Cambridge: MIT.

    Google Scholar 

  • Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation. Psychological Bulletin, 113(3), 566–579.

    Article  PubMed  Google Scholar 

  • Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582–593.

    Article  Google Scholar 

  • De Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 357–376). Cambridge: MIT.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.

    Article  Google Scholar 

  • Dreisbach, G., Haider, H., & Kluwe, R. H. (2002). Preparatory processes in the Task-Switching paradigm: Evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 468–483.

    PubMed  Google Scholar 

  • Gooch, C. M., Wiener, M., Hamilton, A. C., & Coslett, H. (2011). Temporal discrimination of sub-and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.

    Article  Google Scholar 

  • Hayashi, M. J., Kantele, M., Walsh, V., Carlson, S., & Kanai, R. (2014). Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8), 1685–1693.

    Article  PubMed  Google Scholar 

  • Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386.

    Article  PubMed  Google Scholar 

  • Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874.

    Article  PubMed  Google Scholar 

  • Klemmer, E. T. (1956). Time uncertainty in simple reaction time. Journal of Experimental Psychology, 51(3), 179–184.

    Article  PubMed  Google Scholar 

  • Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1474–1486.

    PubMed  Google Scholar 

  • Koch, I. (2003). The role of external cues for endogenous advance reconfiguration in task switching. Psychonomic Bulletin & Review, 10, 488–492.

    Article  Google Scholar 

  • Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.

    Article  Google Scholar 

  • Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583.

    Article  PubMed  Google Scholar 

  • Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003a). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia, 41(12), 1583–1592.

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255.

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71(2–3), 226–234.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Agter, F. (2005). Reweighting sequential effects across different distributions of foreperiods: Segregating elementary contributions to nonspecific preparation. Perception and Psychophysics, 67(7), 1161–1170.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Horoufchin, H. (2011). Dissociative patterns of foreperiod effects in temporal discrimination and reaction time tasks. Quarterly Journal of Experimental Psychology, 64(5), 1009–1020.

    Article  Google Scholar 

  • Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106, 121–145.

    Article  PubMed  Google Scholar 

  • Los, S. A., & Schut, M. L. (2008). The effective time course of preparation. Cognitive Psychology, 57(1), 20–55.

    Article  PubMed  Google Scholar 

  • Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological Review, 104, 241–265.

    Article  PubMed  Google Scholar 

  • Merchant, H., & de Lafuente, V. (2014). Introduction to the neurobiology of interval timing. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.

    Chapter  Google Scholar 

  • Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.

    Article  PubMed  Google Scholar 

  • Mittelstädt, V., Kiesel, A., Fischer, R., Rieger, T., & Thomaschke, R. (in revision). Temporal predictability of between-task interference in dual-tasking. Foreperiods as contextual cues modulate the backward compatibility effect.

  • Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461–470.

    Article  PubMed  Google Scholar 

  • Nieuwenhuis, S., & Monsell, S. (2002). Residual costs in task switching: Testing the failure-to-engage hypothesis. Psychonomic Bulletin & Review, 9, 86–92.

    Article  Google Scholar 

  • Rammsayer, T. (2008). Neuropharmalogical approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295–320). Bingley: Emerald.

    Google Scholar 

  • Rammsayer, T. (2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. NeuroQuantology, 7(1), 103–113.

    Article  Google Scholar 

  • Rammsayer, T., & Ulrich, R. (2001). Counting models of temporal discrimination. Psychonomic Bulletin & Review, 8(2), 270–277.

    Article  Google Scholar 

  • Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120(2), 141–171.

    Article  PubMed  Google Scholar 

  • Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565–574.

    Article  Google Scholar 

  • Rammsayer, T. H., & Troche, S. J. (2014). Elucidating the internal structure of psychophysical timing performance in the sub-second and second range by utilizing confirmatory factor analysis. In H. Merchant & V. de Lafuente (Eds.), Neurobiology of interval timing (pp. 33–47). New York: Springer.

    Chapter  Google Scholar 

  • Rieth, C. A., & Huber, D. E. (2013). Implicit learning of spatiotemporal contingencies in spatial cueing. Journal of experimental psychology: Human Perception and Performance, 39(4), 1165–1180.

    PubMed  Google Scholar 

  • Roberts, F., & Francis, A. L. (2013). Identifying a temporal threshold of tolerance for silent gaps after requests. The Journal of the Acoustical Society of America, 133(6), 471–477.

    Article  Google Scholar 

  • Roberts, F., Margutti, P., & Takano, S. (2011). Judgments concerning the valence of inter-turn silence across speakers of American English, Italian, and Japanese. Discourse Processes, 48(5), 331–354.

    Article  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  • Schneider, D. W., & Logan, G. D. (2006). Hierarchical control of cognitive processes: Switching tasks in sequences. Journal of Experimental Psychology: General, 135(4), 623–640.

    Article  Google Scholar 

  • Schröter, H., Birngruber, T., Bratzke, D., Miller, J., & Ulrich, R. (2015). Task predictability influences the variable foreperiod effect: Evidence of task-specific temporal preparation. Psychological Research, 79(2), 230–237.

    Article  PubMed  Google Scholar 

  • Smith, J. B. (1974). Effects of response rate, reinforcement frequency, and the duration of a stimulus preceding response-independent food. Journal of the Experimental Analysis of Behavior, 21(2), 215–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinborn, M. B., & Langner, R. (2011). Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychologica, 136(3), 405–418.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., & Langner, R. (2012). Arousal modulates temporal preparation under increased time uncertainty: Evidence from higher-order sequential foreperiod effects. Acta Psychologica, 139(1), 65–76.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Langner, R., & Huestegge, L. (2017). Mobilizing cognition for speeded action: Try-harder instructions promote motivated readiness in the constant-foreperiod paradigm. Psychological research, 81(6), 1135–1151.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129(2), 297–307.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2009). Dynamic adjustment of temporal preparation: Shifting warning signal modality attenuates the sequential foreperiod effect. Acta Psychologica, 132(1), 40–47.

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2010). The effect of a cross-trial shift of auditory warning signals on the sequential foreperiod effect. Acta Psychologica, 134(1), 94–104.

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 1335–1340.

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2015). The time-event correlation effect is due to temporal expectancy, not to partial transition costs. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 196–218.

    PubMed  Google Scholar 

  • Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task relevant stimulus features. Timing & Time Perception, 4, 248–270.

    Article  Google Scholar 

  • Thomaschke, R., Kiesel, A., & Hoffmann, J. (2011). Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 2309–2322.

    Article  Google Scholar 

  • Thomaschke, R., Kunchulia, M., & Dreisbach, G. (2015). Time-based event expectations employ relative, not absolute, representations of time. Psychonomic Bulletin & Review, 22, 890–895.

    Article  Google Scholar 

  • Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011a). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 953–964.

    Article  Google Scholar 

  • Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011b). The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. The Quarterly Journal of Experimental Psychology, 64, 2289–2300.

    Article  PubMed  Google Scholar 

  • Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs: General and Applied, 77(13), 1–31.

    Article  Google Scholar 

  • Volberg, G., & Thomaschke, R. (2017). Time-based expectations entail preparatory motor activity. Cortex, 92, 261–270.

    Article  PubMed  Google Scholar 

  • Wagener, A., & Hoffmann, J. (2010). Temporal cueing of target-identity and target-location. Experimental Psychology, 57(6), 436–445.

    Article  PubMed  Google Scholar 

  • Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18(5), 910–916.

    Article  Google Scholar 

  • Wiener, M., Lohoff, F. W., & Coslett, H. B. (2011). Double dissociation of dopamine genes and timing in humans. Journal of Cognitive Neuroscience, 23(10), 2811–2821.

    Article  PubMed  Google Scholar 

  • Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. Neuroimage, 49(2), 1728–1740.

    Article  PubMed  Google Scholar 

  • Wood, G., Willmes, K., Nuerk, H.-C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science, 50(4), 489–525.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant within the Priority Program, SPP 1772 from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant no TH 1554/3-1. We thank Sander Los and Michael Steinborn for many helpful comments on an earlier version of the article. Raw data of the reported experiments are available via the Open Science Framework: https://osf.io/z8mvj/, https://doi.org/10.17605/osf.io/z8mvj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Aufschnaiter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aufschnaiter, S., Kiesel, A. & Thomaschke, R. Humans derive task expectancies from sub-second and supra-second interval durations. Psychological Research 84, 1333–1345 (2020). https://doi.org/10.1007/s00426-019-01155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01155-9

Navigation