Skip to main content
Log in

Contrasting effects of adaptation to a visuomotor rotation on explicit and implicit measures of sensory coupling

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We previously investigated sensory coupling of the sensed positions of cursor and hand in a cursor-control task and found differential characteristics of implicit and explicit measures of the bias of sensed hand position toward the position of the cursor. The present study further tested whether adaptation to a visuomotor rotation differentially affects these two measures. Participants made center-out reaching movements to remembered targets while looking at a rotated feedback cursor. After sets of practice trials with constant (adaptation condition) or random (control condition) visuomotor rotations, test trials served to assess sensory coupling. In these trials, participants judged the position of the hand at the end of the center-out movement, and the deviation of these judgments from the physical hand positions served as explicit measure of the bias of sensed hand position toward the position of the cursor, whereas the implicit measure was based on the direction of the return movement. The results showed that inter-individual variability of explicitly assessed biases of sensed hand position toward the cursor position was less in the adaptation condition than in the control condition. Conversely, no such changes were observed for the implicit measure of the bias of sensed hand position, revealing contrasting effects of adaptation on the explicit and implicit measures. These results suggest that biases of explicitly sensed hand position reflect sensory coupling of neural representations that are altered by visuomotor adaptation. In contrast, biases of implicitly sensed hand position reflect sensory coupling of neural representations that are unaffected by adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeele, S., & Bock, O. (2001a). Mechanisms for sensorimotor adaptation to rotated visual input. Experimental Brain Research, 139, 248–253.

    Article  PubMed  Google Scholar 

  • Abeele, S., & Bock, O. (2001b). Sensorimotor adaptation to rotated visual input: Different mechanisms for small versus large rotations. Experimental Brain Research, 140, 407–410.

    Article  PubMed  Google Scholar 

  • Bock, O., & Eckmiller, R. (1986). Goal-directed arm movements in absence of visual guidance: Evidence for amplitude rather than position control. Experimental Brain Research, 62, 451–458.

    Article  PubMed  Google Scholar 

  • Bresciani, J.-P., Dammeier, F., & Ernst, M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events. Journal of Vision, 6, 554–564.

    Article  PubMed  Google Scholar 

  • Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003a). Limb position drift: Implications for control of posture and movement. Journal of Neurophysiology, 90, 3105–3118.

    Article  PubMed  Google Scholar 

  • Brown, L. E., Rosenbaum, D. A., & Sainburg, R. L. (2003b). Movement speed effects on limb position drift. Experimental Brain Research, 153, 266–274.

    Article  PubMed  Google Scholar 

  • Buch, E. R., Young, S., & Contreras-Vidal, J. L. (2003). Visuomotor adaptation in normal aging. Learning & Memory, 10, 55–63.

    Article  Google Scholar 

  • Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133, 625–637.

    Article  PubMed  Google Scholar 

  • Cressman, E. K., & Henriques, D. Y. P. (2009). Sensory recalibration of hand position following visuomotor adaptation. Journal of Neurophysiology, 102, 3505–3518.

    Article  PubMed  Google Scholar 

  • Cressman, E. K., & Henriques, D. Y. P. (2010). Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input. Journal of Neurophysiology, 103, 1888–1895.

    Article  PubMed  Google Scholar 

  • Debats, N. B., Ernst, M. O., & Heuer, H. (2017). Perceptual attraction in tool-use: Evidence for a reliability-based weighting mechanism. Journal of Neurophysiology, 117, 1569–1580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkerman, H. C., & de Haan, E. H. F. (2007). Somatosensory processes subserving perception and action. Behavioral and Brain Sciences, 30, 189–239.

    Article  PubMed  Google Scholar 

  • Ernst, M. O. (2006). A Bayesian view on multimodal cue integration. In G. Knoblich, I. M. Thornton, M. Grosjean, & M. Shiffrar (Eds.), Human body perception from the inside out (pp. 105–131). Oxford: Oxford University Press.

    Google Scholar 

  • Ernst, M. O. (2012). Optimal multisensory integration: Assumptions and limits. In B. E. Stein (Ed.), The New Handbook of Multisensory Processes (pp. 1084–1124). Cambridge: MIT Press.

    Google Scholar 

  • Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.

    Article  PubMed  Google Scholar 

  • Goble, D. J., Coxon, J. P., Van Impe, A., Geurts, M., Van Hecke, W., Sunaert, S., … Swinnen, S. P. (2012). The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 33, 895–908.

    Article  PubMed  Google Scholar 

  • Harrar, V., & Harris, L. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Experimental Brain Research, 186, 517–524.

    Article  PubMed  Google Scholar 

  • Harrar, V., Harris, L. R., & Spence, C. (2017). Multisensory integration is independent of perceived simultaneity. Experimental Brain Research, 235, 763–775.

    Article  PubMed  Google Scholar 

  • Hatada, Y., Miall, R. C., & Rossetti, Y. (2006). Long-lasting aftereffect of a single prism adaptation: shifts in vision and proprioception are independent. Experimental Brain Research, 173, 415–424.

    Article  PubMed  Google Scholar 

  • Hay, J. C., Pick, H. L., & Ikeda, K. (1965). Visual capture produced by prism spectacles. Psychonomic Science, 2, 215–216.

    Article  Google Scholar 

  • Heuer, H., Hegele, M., & Rand, M. K. (2013). Age-related variations in the control of electronic tools. In C. M. Schlick, E. Frieling, & J. Wegge (Eds.), Age-Differentiated Work Systems (pp. 369–390). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Heuer, H., & Sangals, J. (1998). Task-dependent mixtures of coordinate systems in visuomotor transformations. Experimental Brain Research, 119, 224–236.

    Article  PubMed  Google Scholar 

  • Heuer, H., & Sülzenbrück, S. (2012). The influence of the dynamic transformation of a sliding lever on aiming errors. Neuroscience, 207, 137–147.

    Article  PubMed  Google Scholar 

  • Holmes, N. P., Crozier, G., & Spence, C. (2004). When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cognitive, Affective & Behavioral Neuroscience, 4, 193–200.

    Article  Google Scholar 

  • Holmes, N. P., & Spence, C. (2005). Visual bias of unseen hand position with a mirror: Spatial and temporal factors. Experimental Brain Research, 166, 489–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Izawa, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2012). Cerebellar contributions to reach adaptation and learning sensory consequences of action. Journal of Neuroscience, 32, 4230–4239.

    Article  PubMed  Google Scholar 

  • Kagerer, F. A., Contreras-Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 115, 557–561.

    Article  PubMed  Google Scholar 

  • Kavounoudias, A., Roll, J. P., Anton, J. L., Nazarian, B., Roth, M., & Roll, R. (2008). Proprio-tactile integration for kinesthetic perception: An fMRI study. Neuropsychologia, 46, 567–575.

    Article  PubMed  Google Scholar 

  • Kirsch, W., Pfister, R., & Kunde, W. (2016). Spatial action–effect binding. Attention, Perception & Psychophysics, 78, 133–142.

    Article  Google Scholar 

  • Krakauer, J. W., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21, 1–9.

    Article  Google Scholar 

  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916–8924.

    Article  PubMed  Google Scholar 

  • Ladwig, S., Sutter, C., & Müsseler, J. (2012). Crosstalk between proximal and distal action effects during tool use. Zeitschrift für Psychologie, 220, 10–15.

    Article  Google Scholar 

  • Ladwig, S., Sutter, C., & Müsseler, J. (2013). Intra- and intermodal integration of discrepant visual and proprioceptive action effects. Experimental Brain Research, 231, 457–468.

    Article  PubMed  Google Scholar 

  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford: Stanford University Press.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785.

    Article  PubMed  Google Scholar 

  • Morehead, J. R., Qasim, S. E., Crossley, M. J., & Ivry, R. (2015). Savings upon re-aiming in visuomotor adaptation. Journal of Neuroscience, 35, 14386–14396.

    Article  PubMed  Google Scholar 

  • Neggers, S. F. W., & Bekkering, H. (2000). Ocular gaze is anchored to the target of an ongoing pointing movement. Journal of Neurophysiology, 83, 639–651.

    Article  PubMed  Google Scholar 

  • Paillard, J. (1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and Space (pp. 163–182). Oxford: Oxford University Press.

    Google Scholar 

  • Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92, 1651–1697.

    Article  PubMed  Google Scholar 

  • Rand, M. K., & Heuer, H. (2013). Implicit and explicit representations of hand position in tool use. PLoS ONE, 8, e68471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand, M. K., & Heuer, H. (2016). Effects of reliability and global context on explicit and implicit measures of sensed hand position in cursor-control tasks. Frontiers in Psychology, 6, 2056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand, M. K., & Heuer, H. (in press). Dissociating explicit and implicit measures of sensed hand position in tool use: effect of relative frequency of judging different objects. Attention, Perception, & Psychophysics.

  • Rand, M. K., & Stelmach, G. E. (2010). Effects of hand termination and accuracy constraint on eye-hand coordination during sequential two-segment movements. Experimental Brain Research, 207, 197–211.

    Article  PubMed  Google Scholar 

  • Rand, M. K., Wang, L., Müsseler, J., & Heuer, H. (2013). Vision and proprioception in action monitoring by young and older adults. Neurobiology of Aging, 34, 1864–1872.

    Article  PubMed  Google Scholar 

  • Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042.

    Article  PubMed  Google Scholar 

  • Reichenbach, A., Thielscher, A., Peer, A., Bülthoff, H. H., & Bresciani, J.-P. (2014). A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements. NeuroImage, 84, 615–625.

    Article  PubMed  Google Scholar 

  • Rossetti, Y., Desmurget, M., & Prablanc, C. (1995). Vector coding of movement: Vision, proprioception, or both? Journal of Neurophysiology, 74, 457–463.

    Article  PubMed  Google Scholar 

  • Schenk, T., Franz, V., & Bruno, N. (2011). Vision-for-perception and vision-for-action: Which model is compatible with the available psychophysical and neuropsychological data? Vision Research, 51, 812–818.

    Article  PubMed  Google Scholar 

  • Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. The Behavioral and Brain Sciences, 17, 367–447.

    Article  Google Scholar 

  • Simani, M. C., McGuire, L. M., & Sabes, P. N. (2007). Visual-shift adaptation is composed of separable sensory and task-dependent effects. Journal of Neurophysiology, 98, 2827–2841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Synofzik, M., Lindner, A., & Thier, P. (2008). The cerebellum updates predictions about the visual consequences of one’s behavior. Current Biology, 18, 814–818.

    Article  PubMed  Google Scholar 

  • Van Beers, R. J., Sittig, A. C., & Denier van der Gon, J. J. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.

    Article  PubMed  Google Scholar 

  • Van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12, 834–837.

    Article  PubMed  Google Scholar 

  • Van Dam, L. C. J., & Ernst, M. O. (2013). Knowing each random error of our ways, but hardly correcting for it: An instance of optimal performance. PLoS ONE, 8, e78757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vindras, P., Desmurget, M., Prablanc, C., & Viviani, P. (1998). Pointing errors reflect biases in the perception of the initial hand position. Journal of Neurophysiology, 79, 3290–3294.

    Article  PubMed  Google Scholar 

  • Welch, R. B. (1978). Perceptual modification. Adapting to altered sensory environments. New York: Academic Press.

    Google Scholar 

  • Wendker, N., Sack, O. S., & Sutter, C. (2014). Visual target distance, but not visual cursor path length produces shifts in motor behavior. Frontiers in Psychology, 5, 225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilke, C., Synofzik, M., & Lindner, A. (2013). Sensorimotor recalibration depends on attribution of sensory prediction errors to internal causes. PLoS ONE, 8, e54925.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zbib, B., Henriques, D. Y. P., & Cressman, E. K. (2016). Proprioceptive recalibration arises slowly compared to reach adaptation. Experimental Brain Research, 234, 2201–2213.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Research Foundation (DFG) (Grant number Ra 2183/1-3). We thank Maleen Greine and Franziska Schywalski for their support in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miya K. Rand.

Ethics declarations

Funding

This study was funded by the German Research Foundation (DFG) (Grant number Ra 2183/1-3).

Conflict of interest

Miya Rand declares that she has no conflict of interest. Herbert Heuer declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rand, M.K., Heuer, H. Contrasting effects of adaptation to a visuomotor rotation on explicit and implicit measures of sensory coupling. Psychological Research 83, 935–950 (2019). https://doi.org/10.1007/s00426-017-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0931-1

Navigation