The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers

Abstract

Main conclusion

Promoters of lettuce cis-prenyltransferase 3 (LsCPT3) and CPT-binding protein 2 (LsCBP2) specify gene expression in laticifers, as supported by in situ β-glucuronidase stains and microsection analysis.

Abstract

Lettuce (Lactuca sativa) has articulated laticifers alongside vascular bundles. In the cytoplasm of laticifers, natural rubber (cis-1,4-polyisoprene) is synthesized by cis-prenyltransferase (LsCPT3) and CPT-binding protein (LsCBP2), both of which form an enzyme complex. Here we determined the gene structures of LsCPT3 and LsCBP2 and characterized their promoter activities using β-glucuronidase (GUS) reporter assays in stable transgenic lines of lettuce. LsCPT3 has a single 7.4-kb intron while LsCBP2 has seven introns including a 940-bp intron in the 5′-untranslated region (UTR). Serially truncated LsCPT3 promoters (2.3 kb, 1.6 kb, and 1.1 kb) and the LsCBP2 promoter with (1.7 kb) or without (0.8 kb) the 940-bp introns were fused to GUS to examine their promoter activities. In situ GUS stains of the transgenic plants revealed that the 1.1-kb LsCPT3 and 0.8-kb LsCBP2 promoter without the 5′-UTR intron are sufficient to express GUS exclusively in laticifers. Fluorometric assays showed that the LsCBP2 promoter was several-fold stronger than the CaMV35S promoter and was ~ 400 times stronger than the LsCPT3 promoter in latex. Histochemical analyses confirmed that both promoters express GUS exclusively in laticifers, recognized by characteristic fused multicellular structures. We concluded that both the LsCPT3 and LsCBP2 promoters specify gene expression in laticifers, and the LsCBP2 promoter displays stronger expression than the CaMV35S promoter in laticifers. For the LsCPT3 promoter, it appears that unknown cis-elements outside of the currently examined LsCPT3 promoter are required to enhance LsCPT3 expression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bar-El ML, Vaňková P, Yeheskel A, Simhaev L, Engel H, Man P, Haitin Y, Giladi M (2020) Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat Commun 11(1):1–3. https://doi.org/10.1038/s41467-020-18970-z

    CAS  Article  Google Scholar 

  2. Barreda VD, Palazzesi L, Tellería MC et al (2010) Eocene patagonia fossils of the daisy family. Science 329:1621. https://doi.org/10.1126/science.1193108

    CAS  Article  PubMed  Google Scholar 

  3. Barreda VD, Palazzesi L, Katinas L et al (2012) An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications. Ann Bot 109:127–134. https://doi.org/10.1093/aob/mcs001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bassuner BM, Lam R, Lukowitz W, Yeung EC (2007) Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep 26:1–11. https://doi.org/10.1007/s00299-006-0207-5

  5. Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    CAS  Article  Google Scholar 

  6. Brasher MI, Surmacz L, Leong B et al (2015) A two‐component enzyme complex is required for dolichol biosynthesis in tomato. Plant J 82:903–914. https://doi.org/10.1016/j.indcrop.2012.03.012

  7. Bushman BS, Scholte AA, Cornish K et al (2006) Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 67:2590–2596. https://doi.org/10.1016/j.phytochem.2006.09.012

    CAS  Article  PubMed  Google Scholar 

  8. Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200. https://doi.org/10.1101/gad.1.10.1183

    CAS  Article  PubMed  Google Scholar 

  9. Casas-Mollano JA (2006) Intron-regulated expression of SUVH3, an Arabidopsis Su(var)3–9 homologue. J Exp Bot 57:3301–3311. https://doi.org/10.1093/jxb/erl093

    CAS  Article  PubMed  Google Scholar 

  10. Chakrabarty R, Qu Y, Ro D-K (2015) Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa). Phytochemistry 113:121–129. https://doi.org/10.1016/j.phytochem.2014.12.003

    CAS  Article  PubMed  Google Scholar 

  11. Cornish K (2017) Alternative Natural rubber crops: why should we care? Technol Innov 18:244–255. https://doi.org/10.21300/18.4.2017.245

  12. De Vries IM (1997) Origin and domestication of Lactuca sativa L. Genet Resour Crop Evol 44:165–174. https://doi.org/10.1023/A:1008611200727

    Article  Google Scholar 

  13. Dempewolf H, Rieseberg LH, Cronk QC (2008) Crop domestication in the Compositae: a family-wide trait assessment. Genet Resour Crop Evol 55:1141–1157. https://doi.org/10.1007/s10722-008-9315-0

    Article  Google Scholar 

  14. Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, Ha Y, Sessa WC (2020) Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci USA 117:20794–20802. https://doi.org/10.1073/pnas.2008381117

    CAS  Article  PubMed  Google Scholar 

  15. Epping J, van Deenen N, Niephaus E et al (2015) A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat Plants 1:15048. https://doi.org/10.1038/nplants.2015.48

    CAS  Article  Google Scholar 

  16. Evert R (2006) Internal secretory structures. In: Evert R (ed) Esau’s Plant Anatomy, 3rd edn. Wiley, New York

  17. Grabińska KA, Park EJ, Sessa WC (2016) cis-Prenyltransferase: new insights into protein glycosylation, rubber synthesis, and human diseases. J Biol Chem 291:18582–18590. https://doi.org/10.1074/jbc.R116.739490

  18. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639. https://doi.org/10.1016/j.tplants.2008.09.005

    CAS  Article  PubMed  Google Scholar 

  19. Harrison KD, Park EJ, Gao N, Kuo A, Rush JS, Waechter CJ, Lehrman MA, Sessa WC (2011) Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J 30:2490–2500. https://doi.org/10.1038/emboj.2011.147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Ikezawa N, Göpfert JC, Nguyen DT et al (2011) Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J Biol Chem 286:21601–21611. https://doi.org/10.1074/jbc.M110.216804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7:193–195. https://doi.org/10.1016/s1360-1385(02)02251-3.

  22. Koyama T, Yoshida I, Ogura K (1988) Undecaprenyl diphosphate synthase from Micrococcus luteus BP 26: essential factors for the enzymatic activity. J Biochem 103:867–871. https://doi.org/10.1093/oxfordjournals.jbchem.a122363

    CAS  Article  PubMed  Google Scholar 

  23. Kwon M, Kwon E-JG, Ro DK (2016) cis-Prenyltransferase polymer analysis from a natural rubber perspective. Methods Enzymol 576:121–145. https://doi.org/10.1016/bs.mie.2016.02.026

    CAS  Article  PubMed  Google Scholar 

  24. Lakusta AM, Kwon M, Kwon E-JG, et al (2019) Molecular studies of the protein complexes involving cis-prenyltransferase in guayule (Parthenium argentatum), an alternative rubber-producing plant. Front Plant Sci 10:165. https://doi.org/10.3389/fpls.2019.00165

  25. Lange BM, Turner GW (2013) Terpenoid biosynthesis in trichomes-current status and future opportunities. Plant Biotechnol J 11:2–22. https://doi.org/10.1111/j.1467-7652.2012.00737.x

    CAS  Article  PubMed  Google Scholar 

  26. Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220. https://doi.org/10.1016/S0968-0004(03)00052-5

    CAS  Article  PubMed  Google Scholar 

  27. Lindqvist K (1960) On the origin of cultivated lettuce. Hereditas 46:319–350. https://doi.org/10.1111/j.1601-5223.1960.tb03091.x

    Article  Google Scholar 

  28. Nguyen DT, Göpfert JC, Ikezawa N et al (2010) Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J Biol Chem 285:16588–16598. https://doi.org/10.1074/jbc.M110.111757

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyen T-D, Kwon M, Kim S-U et al (2019) Catalytic plasticity of germacrene A oxidase underlies sesquiterpene lactone diversification. Plant Physiol 181:945–960. https://doi.org/10.1104/pp.19.00629

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Odell JT, Nagy F, Chua NH. Identification of DNA (1985) sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature. 313:810–812. https://doi.org/10.1038/313810a0.

  31. Oldridge DA, Wood AC, Weichert-Leahey N, et al (2015) Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528:418–421. https://doi.org/10.1038/nature15540

  32. Olson KC, Tibbitts TW, Sruckmeyer BE (1967) Morphology and significance of laticifer rupture in lettuce tipburn. Proc Am Soc Hortic Sci 91:377–385

    Google Scholar 

  33. Olson KC, Tibbitts TW, Struckmeyer BE (1969) Leaf histogenesis in Lactuca sativa with emphasis upon laticifer ontology. Am J Bot 56:1212–1216. https://doi.org/10.1002/j.1537-2197.1969.tb09778.x

    Article  Google Scholar 

  34. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: Major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782. https://doi.org/10.1016/j.ympev.2008.02.011

    CAS  Article  PubMed  Google Scholar 

  35. Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant. Arabidopsis Front Plant Sci 5:259. https://doi.org/10.3389/fpls.2014.00259

    Article  PubMed  Google Scholar 

  36. Pickard WF (2008) Laticifers and secretory ducts: Two other tube systems in plants. New Phytol 177:877–888. https://doi.org/10.1111/j.1469-8137.2007.02323.x

    Article  PubMed  Google Scholar 

  37. Qu Y, Chakrabarty R, Tran HT et al (2015) A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J Biol Chem 290:1898–1914. https://doi.org/10.1074/jbc.M114.616920

    CAS  Article  PubMed  Google Scholar 

  38. Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT (2019) Laticifers, latex, and their role in plant defense. Trends Plant Sci 24:553–567. https://doi.org/10.1016/j.tplants.2019.03.006

    CAS  Article  PubMed  Google Scholar 

  39. Rech P, Grima-Pettenati J, Jauneau A (2003) Fluorescence microscopy: a powerful technique to detect low GUS activity in vascular tissues. Plant J 33:205–209. https://doi.org/10.1046/j.1365-313X.2003.016017.x

    CAS  Article  PubMed  Google Scholar 

  40. Reyes-Chin-Wo S, Wang Z, Yang X et al (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8:14953. https://doi.org/10.1038/ncomms14953

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464. https://doi.org/10.1046/j.1365-313X.1997.11030455.x

    CAS  Article  PubMed  Google Scholar 

  42. Sessa RA (2000) Metabolite profiling of sesquiterpene lactones from Lactuca species: Major latexcomponents are novel oxalate and sulfate conjugates of lactucin and its derivatives. J Biol Chem 275:26877–26884. https://doi.org/10.1074/jbc.M000244200

    CAS  Article  PubMed  Google Scholar 

  43. Stahl EA, Raychaudhuri S, Remmers EF, et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508. https://doi.org/10.1038/ng.582

  44. St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900. https://doi.org/10.1105/tpc.11.5.887

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Tata SK, Choi JY, Jung J-Y et al (2012) Laticifer tissue-specific activation of the Hevea SRPP promoter in Taraxacum brevicorniculatum and its regulation by light, tapping and cold stress. Ind Crops Prod 40:219–224. https://doi.org/10.1016/j.indcrop.2012.03.012

    CAS  Article  Google Scholar 

  46. Tomlinson PB (2003) Development of gelatinous (reaction) fibers in stems of Gnetum gnemon (Gnetales). Am J Bot 90:965–972. https://doi.org/10.3732/ajb.90.7.965

    Article  PubMed  Google Scholar 

  47. United Nations (2018) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 20 Jun 2020

  48. Wahler D, Gronover CS, Richter C, et al (2009) Polyphenoloxidase silencing affects latex coagulation in Taraxacum Species. Plant Physiol 151:334 LP – 346. https://doi.org/10.1104/pp.109.138743

  49. Wang G (2014) Recent progress in secondary metabolism of plant glandular trichomes. Plant Biotechnol 31:353–361. https://doi.org/10.5511/plantbiotechnology.14.0701a

    CAS  Article  Google Scholar 

  50. Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci U S A 101:13957–13962. https://doi.org/10.1073/pnas.0405704101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Yeung EC (1984) Histological and histochemical staining procedures. In: Vasil I (ed) Cell culture and somatic cell genetics of plants. Academic Press, Orlando, FL, pp 689–697

    Google Scholar 

  52. Yeung EC, Chan CKW (2015) Glycol methacrylate: the art of embedding and serial sectioning. Botany 93:1–8. https://doi.org/10.1139/cjb-2014-0177

Download references

Acknowledgements

We thank Professor Richard Michelmore (University of California, Davis) for providing us the lettuce cultivar Ninja for this work and Susan Roth for technical support for GUS staining.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (04874-2017) to D.K.R. and E.C.Y. This work was also supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant number: PJ01326501), RDA, Republic of Korea, and Basic Science Research Program by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A6A3A03003409) to M.K. and S.W.K.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyun Ro.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Anastasios Melis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (RTF 201 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnes, E.K., Kwon, M., Hodgins, C.L. et al. The promoter sequences of lettuce cis-prenyltransferase and its binding protein specify gene expression in laticifers. Planta 253, 51 (2021). https://doi.org/10.1007/s00425-021-03566-8

Download citation

Keywords

  • Lettuce
  • Laticifers
  • Isoprenoid
  • Polyisoprene
  • Cis-prenyltransferase
  • Cis-prenyltransferase-binding protein