Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses

Abstract

Main conclusion

This study identified a new bHLHm1 transcription factor MdSAT1 which functioned in mediating tolerance to salt and drought resistance.

Abstract

Changes in the expression of stress-related genes play crucial roles in response to environmental stress. Basic helix-loop-helix (bHLH) proteins are the largest superfamily of transcription factors and a large number of bHLH proteins function in plant responses to abiotic stresses. We identified a new bHLHm1 transcription factor from apple and named it MdSAT1. β-Glucuronidase (GUS) staining showed that MdSAT1 expressed in various tissues with highly expressed in leaves. Promoter analysis revealed that MdSAT1 contained multiple response elements and its transcription was induced by several environmental cues, particularly salt and drought stresses. Overexpression of MdSAT1 in apple calli and Arabidopsis resulted in a phenotype of increased tolerance to salt and drought. Altering abscisic acid (ABA) treatment increased the sensitivity of MdSAT1-OE Arabidopsis to ABA, and heavy metal stress, osmotic stress, and ethylene did not participate in MdSAT1 mediated plant development. These findings reveal the abiotic stress functions of MdSAT1 and pave the way for further functional investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

CDPK:

Calcium-dependent protein kinase

EV:

Empty vector

MDA:

Malondialdehyde

ORF:

Open reading frame

SOS pathway:

Salt overly sensitive pathway

References

  1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868. https://doi.org/10.1105/tpc.9.10.1859

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78. https://doi.org/10.1105/tpc.006130

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54(2):201–212. https://doi.org/10.1007/s10535-010-0038-7

    CAS  Article  Google Scholar 

  4. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274. https://doi.org/10.1007/s00299-006-0204-8

    CAS  Article  Google Scholar 

  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  Google Scholar 

  6. An JP, Li R, Qu FJ, You CX, Wang XF, Hao YJ (2016) Apple F-box protein MdMAX2 regulates plant photomorphogenesis and stress response. Front Plant Sci 7:1685. https://doi.org/10.3389/fpls.2016.01685

    Article  PubMed  PubMed Central  Google Scholar 

  7. An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res 4:17023. https://doi.org/10.1038/hortres.2017.23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ (2018) Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant Cell Environ 41(11):2678–2692. https://doi.org/10.1111/pce.13393

    CAS  Article  PubMed  Google Scholar 

  9. Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7(7):817–821. https://doi.org/10.4161/psb.20351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini MH, Margis-Pinheiro M (2014) Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci 223:1–7. https://doi.org/10.1016/j.plantsci.2014.02.010

    CAS  Article  PubMed  Google Scholar 

  11. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560. https://doi.org/10.1093/aob/mcn125

    CAS  Article  Google Scholar 

  12. Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep 31(9):1747–1758. https://doi.org/10.1007/s00299-012-1288-y

    CAS  Article  PubMed  Google Scholar 

  13. Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, Okamoto M, McLean E, Glass AD, Smith SE, Bisseling T, Tyerman SD, Day DA, Kaiser BN (2014) Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proc Natl Acad Sci USA 111(13):4814–4819. https://doi.org/10.1073/pnas.1312801111

    CAS  Article  PubMed  Google Scholar 

  14. Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177. https://doi.org/10.1007/0-387-25856-6_9

    CAS  Article  Google Scholar 

  15. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    CAS  Article  Google Scholar 

  16. Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3(8):e2944. https://doi.org/10.1371/journal.pone.0002944

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ (2018) Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis. Mol Plant 11(9):1166–1183. https://doi.org/10.1016/j.molp.2018.06.005

    CAS  Article  PubMed  Google Scholar 

  18. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

    CAS  Article  PubMed  Google Scholar 

  19. Dey S, Kundu R, Gopal G, Mukherjee A, Nag A, Paul S (2019) Enhancement of nitrogen assimilation and photosynthetic efficiency by novel iron pulsing technique in Oryza sativa L. var Pankaj. Plant Physiol Biochem 144:207–221. https://doi.org/10.1016/j.plaphy.2019.09.037

    CAS  Article  PubMed  Google Scholar 

  20. Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, Yin W (2014) A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun 450(1):453–458. https://doi.org/10.1016/j.bbrc.2014.05.139

    CAS  Article  PubMed  Google Scholar 

  21. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x

    CAS  Article  PubMed  Google Scholar 

  22. Feng HL, Ma NN, Meng X, Zhang S, Wang JR, Chai S, Meng QW (2013) A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol Biochem 73:309–320. https://doi.org/10.1016/j.plaphy.2013.09.014

    CAS  Article  PubMed  Google Scholar 

  23. Fu SL, Liu GX, Zhang LC (2014) Cloning and analysis of a salt stress related gene TabHLH13 in wheat. J Plant Genet Res 15(5):1006–1011. https://doi.org/10.13430/j.cnki.jpgr.2014.05.013

    CAS  Article  Google Scholar 

  24. Fujii H, Zhu JK (2012) Osmotic stress signaling via protein kinases. Cell Mol Life Sci 69(19):3165–3173. https://doi.org/10.1007/s00018-012-1087-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Guo M, Wu W, Zhou X, Chen Y, Li J (2015) Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor Appl Climatology 119(1):341–351. https://doi.org/10.1007/s00704-014-1126-y

    Article  Google Scholar 

  26. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21(9):R346–R355. https://doi.org/10.1016/j.cub.2011.03.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. He L, Gao CQ, Wang YC, Wu YJ, Liu ZH (2013) A basic helix-loop-helix gene from poplar is regulated by a basic leucine-zipper protein and is involved in the ABA-dependent signaling pathway. Plant Mol Biol Rep 31(2):344–351. https://doi.org/10.1007/s11105-012-0507-6

    CAS  Article  Google Scholar 

  28. Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ (2016) Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet 12(8):e1006273. https://doi.org/10.1371/journal.pgen.1006273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ismail AM, Ella ES, Vergara GV, Mackill DJ (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot 103(2):197–209. https://doi.org/10.1093/aob/mcn211

    CAS  Article  PubMed  Google Scholar 

  30. Jiang J, Wang B, Shen Y, Wang H, Feng Q, Shi H (2013) The Arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression. PLoS Genet 9(7):e1003625. https://doi.org/10.1371/journal.pgen.1003625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41(5):577–585. https://doi.org/10.1023/A:1006319732410

    CAS  Article  PubMed  Google Scholar 

  32. Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  33. Joshi-Saha A, Valon C, Leung J (2011) A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4(201):4. https://doi.org/10.1126/scisignal.2002164

    CAS  Article  Google Scholar 

  34. Kavas M, Baloglu MC, Atabay ES, Ziplar UT, Dasgan HY, Unver T (2016) Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Genet Genomics 291(1):129–143. https://doi.org/10.1007/s00438-015-1095-6

    CAS  Article  PubMed  Google Scholar 

  35. Kim J, Kim HY (2006) Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett 580(22):5251–5256. https://doi.org/10.1016/j.febslet.2006.08.050

    CAS  Article  PubMed  Google Scholar 

  36. Lee T, Lin Y (1996) Peroxidase activity in relation to ethylene-induced rice (Oryza sativa L.) coleoptile elongation. Bot Bull Acad Sinica 37(4):239–245

    CAS  Google Scholar 

  37. Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). BBA Mol Cell Res 1833 7:1582–1589. https://doi.org/10.1016/j.bbamcr.2012.10.024

    CAS  Article  Google Scholar 

  38. Liu WW, Tai HH, Li SS, Gao W, Zhao M, Xie CX, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4):1192–1204. https://doi.org/10.1111/nph.12607

    CAS  Article  PubMed  Google Scholar 

  39. Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ (2017) An apple protein kinase MdSnRK11 interacts with MdCAIP1 to regulate ABA sensitivity. Plant Cell Physiol 58(10):1631–1641. https://doi.org/10.1093/pcp/pcx096

    CAS  Article  PubMed  Google Scholar 

  40. Lu J, Liu X, Ma QJ, Kang H, Liu YJ, Hao YJ, You CX (2019) Molecular cloning and functional characterization of the aluminum-activated malate transporter gene MdALMT14. Sci Hortic Amst 244:208–217. https://doi.org/10.1016/j.scienta.2018.08.045

    CAS  Article  Google Scholar 

  41. Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, Hao YJ (2017) Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiol 174(4):2348–2362. https://doi.org/10.1104/pp.17.00502

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Malencic D, Vasic D, Popovic M, Devic D (2004) Antioxidant systems in sunflower as affected by oxalic acid. Biol Plant 48(2):243–247. https://doi.org/10.1023/B:BIOP.0000033451.96311.18

    CAS  Article  Google Scholar 

  43. Mao K, Dong Q, Li C, Liu C, Ma F (2017) Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Front Plant Sci 8:480. https://doi.org/10.3389/fpls.2017.00480

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mardeh AS, Ahmadi A, Poustini K, Mohammadi V (2006) Evaluation of drought resistance indices under various environmental conditions. Field Crops Res 98(2):222–229. https://doi.org/10.1016/j.fcr.2006.02.001

    Article  Google Scholar 

  45. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440. https://doi.org/10.1128/mcb.20.2.429-440.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Meng C, Zhang T, Guo W (2009) Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep 27(3):381–387. https://doi.org/10.1007/s11105-009-0112-5

    CAS  Article  Google Scholar 

  47. Niu LL, Dong BY, Song ZH, Meng D, Fu YJ (2018) Genome-wide identification and characterization of CIPK family and analysis responses to various stresses in apple (Malus domestica). Int J Mol Sci 19(7):2131. https://doi.org/10.3390/ijms19072131

    CAS  Article  PubMed Central  Google Scholar 

  48. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202(1):35–49. https://doi.org/10.1111/nph.12613

    Article  PubMed  Google Scholar 

  49. Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27(4):862–874. https://doi.org/10.1093/molbev/msp288

    Article  PubMed  Google Scholar 

  50. Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDzeta 1 with distinct regulatory domains. Plant Physiol 128(3):1057–1068. https://doi.org/10.1104/pp.010928

    Article  PubMed  PubMed Central  Google Scholar 

  51. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15(7):395–401. https://doi.org/10.1016/j.tplants.2010.04.006

    CAS  Article  PubMed  Google Scholar 

  52. Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-1929-1

    Article  Google Scholar 

  53. Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13(6):281–287. https://doi.org/10.1016/j.tplants.2008.04.003

    CAS  Article  PubMed  Google Scholar 

  54. Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16:9. https://doi.org/10.1186/s12864-014-1209-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15(8):1749–1770. https://doi.org/10.1105/tpc.013839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127(3):1102–1112. https://doi.org/10.1104/pp.010444

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602. https://doi.org/10.1007/s11103-008-9340-6

    CAS  Article  PubMed  Google Scholar 

  58. Xu JN, Xing SS, Zhang ZR, Chen XS, Wang XY (2016) Genome-wide identification and expression analysis of the tubby-like protein family in the Malus domestica genome. Front Plant Sci 7:1693. https://doi.org/10.3389/fpls.2016.01693

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    CAS  Article  PubMed  Google Scholar 

  60. Yamane K, Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2009) Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Prod Sci 12(3):319–326. https://doi.org/10.1626/pps.12.319

    CAS  Article  Google Scholar 

  61. Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233(2):219–229. https://doi.org/10.1007/s00425-010-1279-6

    CAS  Article  PubMed  Google Scholar 

  62. Yang YY, Ren YR, Zheng PF, Qu FJ, Song LQ, You CX, Wang XF, Hao YJ (2020a) Functional identification of apple MdMYB2 gene in phosphate-starvation response. J Plant Physiol 244:153089. https://doi.org/10.1016/j.jplph.2019.153089

    CAS  Article  PubMed  Google Scholar 

  63. Yang YY, Ren YR, Zheng PF, Zhao LL, You CX, Wang XF, Hao YJ (2020b) Cloning and functional identification of a strigolactone receptor gene MdD14 in apple. Plant Cell Tiss Org 140(1):197–208. https://doi.org/10.1007/s11240-019-01722-3

    CAS  Article  Google Scholar 

  64. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009

    CAS  Article  PubMed  Google Scholar 

  65. Zhang X, Takano T, Liu S (2006) Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.). J Exp Bot 57(1):193–200. https://doi.org/10.1093/jxb/erj025

    CAS  Article  PubMed  Google Scholar 

  66. Zhong MS, Jiang H, Cao Y, Wang YX, You CX, Li YY, Hao YJ (2020) MdCER2 conferred to wax accumulation and increased drought tolerance in plants. Plant Physiol Biochem 149:277–285. https://doi.org/10.1016/j.plaphy.2020.02.013

    CAS  Article  PubMed  Google Scholar 

  67. Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166(12):1296–1306. https://doi.org/10.1016/j.jplph.2009.02.007

    CAS  Article  PubMed  Google Scholar 

  68. Zhu J (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71. https://doi.org/10.1016/S1360-1385(00)01838-0

    CAS  Article  PubMed  Google Scholar 

  69. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445. https://doi.org/10.1016/s1369-5266(03)00085-2

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Agricultural Variety Improvement Project of Shandong Province (2019LZGC007), Natural Science Foundation of China (Grants 31972378), Major Program of Shandong Provincial Natural Science Foundation (ZR2017ZC0328, ZR2018MC021), and Ministry of Agriculture of China (CARS-27).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Fei Wang or Yu-Jin Hao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dorothea Bartels.

Supplementary Information

Below is the link to the electronic supplementary material.

a

Fig. S1 Tissue expression pattern of MdSATs. a Tissue (stems, roots, leaves, flowers, and fruits) expression analysis of MdSAT1 using MdUBQ as control gene by qRT-PCR in Gala. Take the expression of MdSATs in the bud as the relative value, and analyze the significant difference of the expression of MdSAT1 in other tissues. b Tissue expression analysis of MdSAT1 by GUS staining in ProMdSAT1::GUS transgenic Arabidopsis. c Tissue (stems, roots, leaves, flowers, and fruits) expression analysis of MdSAT1-2, MdSAT1-3, and MdSAT1-4 using MdACT as control gene by qRT-PCR in Gala. d Tissue (stems, roots, leaves, flowers, and fruits) expression analysis of MdSAT1-2, MdSAT1-3, and sMdSAT1-4 using MdUBQ as control gene by qRT-PCR in Gala. Take the expression of MdSAT1-2 in various tissues as the relative value, and analyze the significant difference of the expression of MdSAT1-3 and MdSAT1-4 in various tissues. Each set of experiments was repeated three times. Error bars represent standard deviations and * significant values at P < 0.05, ** at P < 0.01 (JPG 837 KB)

a

Fig. S2 The abiotic stress response of MdSAT1. The expression of MdSAT1 with MdUBQ as the control gene by qRT-PCR in Gala treated with 100 mM NaCl (a), 6% PEG (b), 250 mM DL mannitol (c), 4 °C (d), 50 μM Cd (e), 50 μM Cu (f), 200 μM ABA (g) and 100 μM ETH (h), respectively. Take the expression of MdSAT1 in each time period under the control treatment as a relative value, and analyze the significant difference of the expression of MdSAT1 in each time period under other treatments. Each set of experiments was repeated three times. Error bars represent standard deviations and * significant values at P < 0.05, ** at P < 0.01 (JPG 1748 KB)

a

Fig. S3 GUS staining in ProMdSAT1::GUS transgenic Arabidopsis. a The ProMdSAT1::GUS transgenic Arabidopsis treated with for 48 h. b The GUS activity of MdSAT1 of a. Take the GUS activity of MdSAT1 under 23 °C treatment for 0 h as the relative value, and analyze the significant difference of the CUS activity of MdSAT1 under other treatment times. Each set of experiments was repeated three times. Error bars represent standard deviations and * significant values at P < 0.05 (JPG 768 KB)

a

Fig. S4 The expression of MdSAT1 in transgenic plants. a The expression of MdSAT1 with MdACT as the control gene by qRT-PCR in transgenic calli. b The expression of MdSAT1 using MdACT as the control gene by qRT-PCR in transgenic Arabidopsis plants. c The expression of MdSAT1 using MdUBQ as the control gene by qRT-PCR in transgenic calli. d The expression of MdSAT1 with MdUBQ as the control gene by qRT-PCR in transgenic Arabidopsis plants. Take the expression of MdSAT1 in control lines as the relative value, and analyze the significant difference of the expression of MdSAT1 under MdSAT1 transgenic plants. Each set of experiments was repeated three times. Error bars represent standard deviations and * significant values at P < 0.05, ** at P < 0.01 (JPG 835 KB)

a

Fig. S5 The expression of stress-related genes in Col, EV, and MdSAT1-OE plants. The expression of SOS1, SOS3, CDPK6, ABI1, ABI2, and PLC5 with AtUBC as the control gene by qRT-PCR in Col, EV, and MdSAT1-OE plants. b The expression of ZEP, NCED9, AAO3, P450, RD16, RD29A, KIN2, and DREB2 using AtUBC as the control gene by qRT-PCR in Col, EV, and MdSAT1-OE plants. The expression level of the measured gene in the control line was taken as the relative value, and the significant difference was analyzed about the expression level of the measured gene in the EV and MdSAT1 transgenic lines. Each set of experiments was repeated three times. Error bars represent standard deviations and * significant values at P < 0.05 (JPG 946 KB)

Table S1 Primer names and sequences used in this study (DOCX 54 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, YY., Zheng, PF., Ren, YR. et al. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253, 46 (2021). https://doi.org/10.1007/s00425-020-03528-6

Download citation

Keywords

  • Abiotic stress
  • Apple
  • Drought
  • MdSAT1
  • Salt