Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage

Abstract

Main conclusion

Transcriptomic studies in resistant and susceptible tea cultivars have been performed to reveal the different defense molecular mechanisms of tea after E. onukii feeding.

Abstract

The molecular mechanism by which tea plants respond to small green leafhopper Empoasca onukii (Matsuda) damage is unclear. Using the resistant tea plant cultivar Juyan (JY) and the susceptible tea plant cultivar Enbiao (EB) as materials, this study performed RNA-seq on tea leaf samples collected at three time points (6 h, 12 h, 24 h) during exposure of the plants to leafhopper to reveal the molecular mechanisms that are activated in susceptible and resistant tea plant cultivars in response to leafhopper damage. The numbers of DEGs in the susceptible tea cultivar during early (6 h) and late (24 h) stages of leafhopper induction were higher than those in the resistant cultivar at the same time points. The stress responses to leafhopper were most intense at 12 h in both tea cultivars. Pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two tea cultivars. However, during the early stage of leafhopper induction (6 h), jasmonic acid (JA)-related genes were significantly up-regulated in the resistant cultivar. The terpenoid biosynthetic pathway and the α-linolenic acid metabolic pathway were activated earlier in the resistant cultivar and remained activated until the late stage of leafhopper damage. Our results confirmed that after leafhopper damage, the resistant tea cultivar activated its defense responses earlier than the susceptible cultivar, and these defense responses were mainly related to terpenoid metabolism and JA biosynthetic pathway. The results provide important clues for further studies on resistance strategy of tea plants to pest.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

DEG:

Differentially expressed gene

EB:

Enbiao

GO:

Gene Ontology

JA:

Jasmonic acid

JY:

Juyan

KEGG:

Kyoto Encyclopedia of Genes and Genomes

TF:

Transcription factor

References

  1. Alibory Z, Chen MS (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25:2–23. https://doi.org/10.1111/1744-7917.12436

    CAS  Article  Google Scholar 

  2. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205. https://doi.org/10.1146/annurev.arplant.043008.092007

    CAS  Article  PubMed  Google Scholar 

  3. Cai XM (2009) The emission of tea plant volatiles induced by three herbivore insect pests. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/article/cdmd-82101-2010171082.htm

  4. Chen CJ, Chen H, He YH, Xia R (2018) TBtools, a Toolkit for biologists integrating various biological data handling tools with a user-friendly interface. bioRxiv. https://doi.org/10.1101/289660(Preprint)

    Article  Google Scholar 

  5. Du H, Li X, Ning L, Qin R, Du Q, Wang Q, Song H, Huang F, Wang H, Yu D (2019) RNA-Seq analysis reveals transcript diversity and active genes after common cutworm (Spodoptera litura Fabricius) attack in resistant and susceptible wild soybean lines. BMC Genomics 20: 237. https://doi.org/10.1186/s12864-019-5599-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    CAS  Article  Google Scholar 

  7. Fu JY (2017) The sesquiterpene metabolism and response to diverse biotic stresses in tea plant. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/Article/CDMD-82101-1017255172.htm

  8. Furstenberg-Hagg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297. https://doi.org/10.3390/ijms140510242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Gan X, Stegle O, Behr J et al (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–423. https://doi.org/10.1038/nature10414

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Han GZ (2017) Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 68:1323–1331. https://doi.org/10.1093/jxb/erw470

    CAS  Article  PubMed  Google Scholar 

  11. Hettenhausen C, Baldwin IT, Wu JQ (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytol 199:787–799. https://doi.org/10.1111/nph.12312

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Hohenstein JD, Studham ME, Klein A, Kovinich N, Barry K, Lee YJ, MacIntosh GC (2019) Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front Plant Sci 10:310. https://doi.org/10.3389/fpls.2019.00310

    Article  PubMed  PubMed Central  Google Scholar 

  13. Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as rrevealed by the responses of genes under stress conditions. Front Plant Sci 7:984–993. https://doi.org/10.3389/fpls.2016.00984

    Article  PubMed  PubMed Central  Google Scholar 

  14. Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415. https://doi.org/10.1146/annurev-arplant-042817-040047

    CAS  Article  PubMed  Google Scholar 

  15. Huang C, Zhang J, Zhang X, Yu Y, Bian W, Zeng Z, Sun X, Li X (2018) Two new polyphenol oxidase Genes of tea plant (Camellia sinensis) respond differentially to the regurgitant of tea geometrid Ectropis obliqua. Int J Mol Sci 19(8):2414. https://doi.org/10.3390/ijms19082414

    CAS  Article  PubMed Central  Google Scholar 

  16. Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, Wei C (2017) Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Sci Rep 7(13634):13634. https://doi.org/10.1038/s41598-017-13692-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Jin S, Sun XL, Chen ZM, Xiao B (2012a) Resistance of different tea cultivars to Empoasca vitis Göthe. Scientia Agricultura Sinica 45:255–265. https://doi.org/10.3864/j.issn.0578-1752.2012.02.007

    Article  Google Scholar 

  18. Jin S, Sun XL, Chen ZM, Xiao B et al (2012b) Applications of electric penetration graph (EPG)Technique in the research of resistance of tea plant to piercing-sucking insects. J Tea Sci 32: 393–401

    Google Scholar 

  19. Jin S, Chen ZM, Backus EA, Sun XL, Xiao B (2012) Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities. J Insect Physiol 58(9):1235–1244. https://doi.org/10.1016/j.jinsphys.2012.06.008

    CAS  Article  PubMed  Google Scholar 

  20. Jin S, Sun XL, Zhang XZ, Ye NX, Chen ZM (2016) Chemical analysis of 8 tea cultivars with different levels of resistance to Empoasca vitis Göthe the and a preliminary identification of the chemical basis of this resistance. Chin J Appl Entomol 53: 516–527

    CAS  Google Scholar 

  21. Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:1040–1045. https://doi.org/10.1093/nar/gkw982

    CAS  Article  Google Scholar 

  22. Jin S, Han LW, Ye NX, Wang W, Huang HS, Liu W (2019) Analysis on volatiles of oolong tea Varieties induced by Empoasca sp. Chin J Trop Crops 40: 576–582

    Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Kersten B, Ghirardo A, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Fladung M, Schroeder H (2013) Integrated transcriptomics and metabolomics decipher differences in the resistance of pedunculate oak to the herbivore Tortrix viridana L. BMC Genom 14: 737. https://doi.org/10.1186/1471-2164-14-737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580. https://doi.org/10.1016/j.phytochem.2009.07.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kostyn K, Czemplik M, Kulma A, Bortniczuk M, Skala J, Szopa J (2012) Genes of phenylpropanoid pathway are activated in early response to Fusarium attack in flax plants. Plant Sci 190:103–115. https://doi.org/10.1016/j.plantsci.2012.03.011

    CAS  Article  PubMed  Google Scholar 

  27. Li HL, Lin NQ (2009) The difference of egg number in different positions of tea shoot. Tea Sci Tech 3: 18–19

    Google Scholar 

  28. Li H, Yu Y, Li Z, Arkorful E, Yang Y, Liu X, Li X, Li R (2018) Benzothiadiazole and B-aminobutyric acid induce resistance to Ectropis obliqua in tea plants (Camellia Sinensis (L.) O. Kuntz). Molecules 23:1290. https://doi.org/10.3390/molecules23061290

    CAS  Article  PubMed Central  Google Scholar 

  29. Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    CAS  Article  Google Scholar 

  30. Liu QS, Wang XY, Tzin V, Romeis J, Peng YF, Li YH (2016) Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC Plant Biol 16:259. https://doi.org/10.1186/s12870-016-0946-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793. https://doi.org/10.1093/bioinformatics/bti430

    CAS  Article  PubMed  Google Scholar 

  32. Mu D (2011) Studies on efficacy of volatile infochemicals from tea plants regulating behaviours of tea green leafhopper and its egg parasitoid Stethynium empoascae. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/article/cdmd-82101-1011159158.htm

  33. Pei MS, Niu JX, Li CJ, Cao FJ, Quan SW (2016) Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear. BMC Genom 17:132. https://doi.org/10.1186/s12864-016-2470-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Moran E (2013) Genomics and chromatin packaging. Annual plant reviews. Wiley, New York, pp 123–156

    Google Scholar 

  35. Soni RP, Katoch M, Kuman A, Ladohiya R, Verma P (2015) Tea: production, composition, consumption and its potential an antioxidant and antimicrobial agent. Int J Food Ferment Technol 5:95–106

    Article  Google Scholar 

  36. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270. https://doi.org/10.1016/j.tplants.2012.02.010

    CAS  Article  PubMed  Google Scholar 

  37. Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766. https://doi.org/10.1093/jxb/erj135

    CAS  Article  PubMed  Google Scholar 

  38. Tian L, Chang CL, Ma L, Nasir F, Zhang JF, Li WQ, Tran LP, Tian CJ (2019) Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice 12:35. https://doi.org/10.1186/s12284-019-0287-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tronchet M, Balague C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92. https://doi.org/10.1111/j.1364-3703.2009.00578.x

    CAS  Article  PubMed  Google Scholar 

  40. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wang GC (2010) Ecological functions of tea plant volatiles induced by three herbivores. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/article/cdmd-82101-2010171082.htm

  42. Wang D (2015) Exploring the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by transcriptomic comparisons. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/Article/CDMD-82101-1015378842.htm

  43. Wang YN, Tang L, Hou Y, Wang P, Yang H, Wei CL (2016) Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genom 16:383–398. https://doi.org/10.1007/s10142-016-0491-2

    CAS  Article  Google Scholar 

  44. Wang WW, Zheng C, Hao WJ, Ma CL, Ma JQ, Ni DJ, Chen L (2018) Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS ONE 13:e0201670. https://doi.org/10.1371/journal.pone.0201670

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wang ZP, Li YJ, Li CN, Song XP, Lei JC, Gao YJ, Liang Q (2019) Comparative transcriptome profiling of resistant and susceptible sugarcane genotypes in response to the airborne pathogen Fusarium verticillioides. Mol Biol Rep 46:3777–3789. https://doi.org/10.1007/s11033-019-04820-9

    CAS  Article  PubMed  Google Scholar 

  46. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058. https://doi.org/10.1093/aob/mct067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. https://doi.org/10.1146/annurev-genet-102209-163500

    CAS  Article  PubMed  Google Scholar 

  49. Wu DY, Jing J, Wang G, Guan CF, Jin C (2014) LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Report 33(12):2033–2045. https://doi.org/10.1007/s00299-014-1678-4

    CAS  Article  Google Scholar 

  50. Xin ZJ, Chen SL, Ge LG, Li X, Sun XL (2019) The involvement of a herbivore-induced acyl-CoA oxidase gene, CsACX1, in the synthesis of jasmonic acid and its expression in flower opening in tea plant (Camellia sinensis). Plant Physiol Biochem 135:132–140. https://doi.org/10.1016/j.plaphy.2018.11.035

    CAS  Article  PubMed  Google Scholar 

  51. Xu XX (2015) Attraction of tea plant volatiles to Empoasca vitis and influencing factors. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing. https://cdmd.cnki.com.cn/Article/CDMD-82101-1016174614.htm

  52. Yang JF, Li MR (2019) Blue book of tea industry: annual development and research reports on China’s tea industry 2018. Chinese Social Sciences Academic Press, Beijing, China

    Google Scholar 

  53. Yang H, Xie S, Wang L, Jing S, Zhu X, Li X, Zeng W, Yuan H (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic 130:476–481. https://doi.org/10.1016/j.scienta.2011.07.023

    CAS  Article  Google Scholar 

  54. Yang H, Wang Y, Li L, Li F, He Y, Wu J, Wei C (2019) Transcriptomic and phytochemical analysis reveal root-mediated resource-based defense response to leaf-herbivory by Ectropis oblique in tea plant (Camellia sinensis). J Agric Food Chem 67:5465–5476. https://doi.org/10.1021/acs.jafc.9b00195

    CAS  Article  PubMed  Google Scholar 

  55. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Zeier J (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ 36(12):2085–2103. https://doi.org/10.1111/pce.12122

    CAS  Article  PubMed  Google Scholar 

  57. Zeng L, Wang SP, Xu M (2001) Study on the resistance of tea plant to leafhopper (Empoasca vitis Gӧthe). J Tea Sci 2:11–14 (in Chinese)

    Google Scholar 

  58. Zhai CJ, Xu P, Zhang X, Guo Q, Zhang XG, Xu ZZ, Shen XL (2015) Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. Theor App Genet 128(8):1531–1540. https://doi.org/10.1007/s00122-015-2528-7

    CAS  Article  PubMed  Google Scholar 

  59. Zhang PJ, Broekgaarden C, Zheng SJ, Snoeren TAL, van Loon JJA, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197(4):1291–1299. https://doi.org/10.1111/nph.12106

    CAS  Article  PubMed  Google Scholar 

  60. Zheng YT, Wang MX, Cui L, Han SJ, Yu PF, Han BY (2017) Resistance of tea cultivars to the tea green leafhopper analyzed by EPG technique and their resistance-related substances. Acta Ecol Sin 37(23):8015–8028. https://doi.org/10.5846/stxb201704270770

    Article  Google Scholar 

  61. Zhou Q, Luo D, Chai XT, Wu YG, Nan ZB, Yang QC, Liu WX, Liu ZP (2018) Multiple regulatory networks are activated during cold stress in medicago sativa L. Int J Mol Sci. 19(10):3169. https://doi.org/10.3390/ijms19103169

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the technical staff and students at Chinese Academy of Agricultural Sciences including Ms. Zhaona Meng, Mr. Bo Chu and Mr. Long Jiao for their useful discussions.

Funding

Funding was provided by the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops 2019 Open Fund (SKL20190010); Fu Jian Province “2011 Collaborative Innovation Center”; Chinese Oolong Tea Industry Innovation Center (Cultivation) special project (J2015-75); Industry-University Cooperation Project of Fujian Province (2016N5010); National Natural Science Foundation of China (31702052); Key Research and Development Program of Zhejiang province, China (2019C02033).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Zongmao Chen.

Ethics declarations

Conflict of interest

No conflict of interest has been declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ren, Q., Lian, L. et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta 252, 10 (2020). https://doi.org/10.1007/s00425-020-03407-0

Download citation

Keywords

  • Host plant resistance
  • Molecular mechanism
  • Tea small green leafhopper
  • Transcriptome