Overexpression of a basic helix–loop–helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.)

Abstract

Main conclusion

The overexpression of SlbHLH22 functioned in controlling flowering time, accelerated fruit ripening, and produced more ethylene-producing phenotypes in tomato.

Abstract

Flowering and fruit ripening are two complex transition processes regulated by various internal and external factors that ultimately lead to fruit maturation and final seed dispersal. The basic helix–loop–helix (bHLH) transcription factor is the largest TF gene family in plants that controls various biological and developmental aspects, but the actual roles of these genes have not been fully studied. Here, we performed a functional characterization of the bHLH gene SlbHLH22 in tomato. SlbHLH22 was fully expressed in tomato flowers, while a moderate expression level was also observed in fruits at different developmental stages. Overexpression of the SlbHLH22 gene revealed that it is highly involved in controlling flowering time, through the activation of the SlSFT or SlLFY genes, and promoting fruit ripening and improved carotenoid accumulation. The expression patterns of carotenoid-related genes (SlPYS1) were also upregulated in transgenic tomato fruits. In transgenic tomato fruit, we observed clear changes in colour from green to orange with enhanced expression of the SlbHLH22 gene. SlbHLH22 was upregulated under exogenous ACC, IAA, ABA, and ethephon. Overexpression of SlbHLH22 also promotes ethylene production. Moreover, ethylene biosynthesis and perception genes (SlACO3, SlACS1, SlACS2, SlACS4, SlACS1a, SlEIN1, SlEIN2, SlEIN3, SlEIN4, SlETR2, SlETR3, SlSAM3, and SlSAMS) were upregulated. Ripening-related genes (SlAP2a, SlCNR, SlNOR, SlMYB, and SlTAG) were consistent in their expression pattern in transgenic plants. Finally, our study provides evidence that tomato bHLH genes play an important role in flowering, fruit ripening, and development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

ACS:

1-Aminocyclopropane-1-carboxylate synthase

bHLH:

Basic helix–loop–helix

DPA:

Days post-anthesis

TFs:

Transcription factors

References

  1. Adams DO, Yang SF (1977) Methionine metabolism in apple tissue: implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol 60(6):892–896

    CAS  Article  Google Scholar 

  2. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53(377):2039–2055

    CAS  Article  Google Scholar 

  3. Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9(4):525–535

    CAS  Article  Google Scholar 

  4. Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123(3):979–986. https://doi.org/10.1104/pp.123.3.979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130(26):6431

    CAS  Article  Google Scholar 

  6. Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio/Technol 9:635. https://doi.org/10.1038/nbt0791-635

    CAS  Article  Google Scholar 

  7. Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53(377):2107–2113. https://doi.org/10.1093/jxb/erf059

    CAS  Article  PubMed  Google Scholar 

  8. Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64(6):936–947. https://doi.org/10.1111/j.1365-313X.2010.04384.x

    CAS  Article  PubMed  Google Scholar 

  9. Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J (2010) Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol 10:229. https://doi.org/10.1186/1471-2229-10-229

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N (2017) Light-dependent degradation of PIF3 by SCFEBF1/2 promotes a photomorphogenic response in Arabidopsis. Curr Biol 27(16):2420–2430.e2426. https://doi.org/10.1016/j.cub.2017.06.062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14(18):2377–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium Tumefaciens vector. Bio/Technol 5:726. https://doi.org/10.1038/nbt0787-726

    CAS  Article  Google Scholar 

  13. Fish WW, Perkins-Veazie P, Collins JK (2002) A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J Food Compos Anal 15(3):309–317. https://doi.org/10.1006/jfca.2002.1069

    CAS  Article  Google Scholar 

  14. Forth D, Pyke KA (2006) The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening. J Exp Bot 57(9):1971–1979. https://doi.org/10.1093/jxb/erj144

    CAS  Article  PubMed  Google Scholar 

  15. Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105(1):405–413

    CAS  Article  Google Scholar 

  16. Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y (2012) Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235(6):1107–1122. https://doi.org/10.1007/s00425-011-1561-2

    CAS  Article  PubMed  Google Scholar 

  17. Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53(5):717–730. https://doi.org/10.1111/j.1365-313X.2007.03362.x

    CAS  Article  PubMed  Google Scholar 

  18. Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, Jing Y, Meng L, Zhu B, Zhu H, Chen J, Jiang C-Z, Grierson D, Luo Y, Fu D-Q (2018) A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic Res 5:75–75. https://doi.org/10.1038/s41438-018-0111-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gao Y, Zhu N, Zhu X, Wu M, Jiang C-Z, Grierson D, Luo Y, Shen W, Zhong S, Fu D-Q, Qu G (2019) Diversity and redundancy of the ripening regulatory networks revealed by the fruit ENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Hortic Res 6:39–39. https://doi.org/10.1038/s41438-019-0122-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180. https://doi.org/10.1105/tpc.019158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert K, Tanksley SD (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet 248(2):195–206

    CAS  Article  Google Scholar 

  22. Groszmann M, Paicu T, Smyth DR (2008) Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. Plant J 55:40–52. https://doi.org/10.1111/j.1365-313X.2008.03469.x

    CAS  Article  PubMed  Google Scholar 

  23. Hiwasa K (2003) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exp Bot 54(383):771–779. https://doi.org/10.1093/jxb/erg073

    CAS  Article  PubMed  Google Scholar 

  24. Hu ZL, Chen XQ, Chen GP, Lü LJ, Donald G (2007) The influence of co-suppressing tomato 1-aminocyclopropane-1-carboxylic acid oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes. Agric Sci China 6(413):406–413. https://doi.org/10.1016/S1671-2927(07)60063-7

    CAS  Article  Google Scholar 

  25. Ichihashi Y, Horiguchi G, Gleissberg S, Tsukaya H (2010) The bHLH transcription factor SPATULA controls final leaf size in Arabidopsis thaliana. Plant Cell Physiol 51(2):252–261. https://doi.org/10.1093/pcp/pcp184

    CAS  Article  PubMed  Google Scholar 

  26. Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60(6):1081–1095. https://doi.org/10.1111/j.1365-313X.2009.04064.x

    CAS  Article  PubMed  Google Scholar 

  27. Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55(2):212–223. https://doi.org/10.1111/j.1365-313X.2008.03491.x

    CAS  Article  PubMed  Google Scholar 

  28. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467(1):76–82. https://doi.org/10.1016/j.bbrc.2015.09.117

    CAS  Article  PubMed  Google Scholar 

  29. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Toki S (2017) Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat Plants 3(11):866–874. https://doi.org/10.1038/s41477-017-0041-5

    CAS  Article  PubMed  Google Scholar 

  30. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5(6):226. https://doi.org/10.1186/gb-2004-5-6-226

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23(3):923–941. https://doi.org/10.1105/tpc.110.081273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kneissl ML, Deikman J (1996) The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol 112(2):537–547

    CAS  Article  Google Scholar 

  33. Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6(4):521–530. https://doi.org/10.1105/tpc.6.4.521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Li S, Xu H, Ju Z, Cao D, Zhu H, Fu D, Grierson D, Qin G, Luo Y, Zhu B (2018) The RIN-MC fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiol 176(1):891. https://doi.org/10.1104/pp.17.01449

    CAS  Article  PubMed  Google Scholar 

  35. Lifschitz E, Eshed Y (2006) Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot 57:3405–3414

    CAS  Article  Google Scholar 

  36. Lincoln JE, Fischer RL (1988a) Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212(71):71–75. https://doi.org/10.1007/BF00322446

    CAS  Article  PubMed  Google Scholar 

  37. Lincoln JE, Fischer RL (1988b) Regulation of gene expression by ethylene in wild-type and rin tomato (Lycopersicon esculentum) fruit. Plant Physiol 88(2):370–374. https://doi.org/10.1104/pp.88.2.370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Lincoln JE, Cordes S, Read E, Fischer RL (1987) Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci USA 84(9):2793–2797. https://doi.org/10.1073/pnas.84.9.2793

    CAS  Article  PubMed  Google Scholar 

  39. Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q (2012) Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J Exp Bot 63(16):5751–5761. https://doi.org/10.1093/jxb/ers224

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Li X, Li K, Liu H, Lin C (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet 9(10):e1003861. https://doi.org/10.1371/J.pgen.1003861

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu M, Pirrello J, Chervin C, Roustan J-P, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169(4):2380–2390. https://doi.org/10.1104/pp.15.01361

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  43. Luengo E, Álvarez I, Raso J (2014) Improving carotenoid extraction from tomato waste by pulsed electric fields. Front Nutr 1:12–12. https://doi.org/10.3389/fnut.2014.00012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157(3):1568–1579. https://doi.org/10.1104/pp.111.181107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613. https://doi.org/10.1038/nbt0602-613

    CAS  Article  PubMed  Google Scholar 

  46. Molinero-Rosales N, Latorre A, Jamilena M, Lozano R (2004) SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218(3):427–434. https://doi.org/10.1007/s00425-003-1109-1

    CAS  Article  PubMed  Google Scholar 

  47. Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118(4):1295–1305

    CAS  Article  Google Scholar 

  48. Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478(7367):119–122. https://doi.org/10.1038/nature10431

    CAS  Article  PubMed  Google Scholar 

  49. Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95(5):657–667. https://doi.org/10.1016/S0092-8674(00)81636-0

    CAS  Article  PubMed  Google Scholar 

  50. Nukumizu Y, Wada T, Tominaga-Wada R (2013) Tomato (Solanum lycopersicum) homologs of TRIPTYCHON (SlTRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation. Plant Signal Behav 8(7):e24575. https://doi.org/10.4161/psb.24575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. O’Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB, Klee HJ (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133(3):1181–1189. https://doi.org/10.1104/pp.103.030379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254(5030):437–439. https://doi.org/10.1126/science.1925603

    CAS  Article  PubMed  Google Scholar 

  53. Oetiker JH, Olson DC, Shiu OY, Yang SF (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol Biol 34(2):275–286. https://doi.org/10.1023/A:1005800511372

    CAS  Article  PubMed  Google Scholar 

  54. Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park K II, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S (2011) A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62(14):5105–5116. https://doi.org/10.1093/jxb/err216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Olson DC, White JA, Edelman L, Harkins RN, Kende H (1991) Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88(12):5340–5344. https://doi.org/10.1073/pnas.88.12.5340

    CAS  Article  PubMed  Google Scholar 

  56. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330(6009):1397–1400. https://doi.org/10.1126/science.1197004

    CAS  Article  PubMed  Google Scholar 

  57. Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci 47(1):1–19. https://doi.org/10.1080/10408390600976841

    CAS  Article  Google Scholar 

  58. Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y (2016) The tomato Hoffman’s Anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One 11(3):e0151067. https://doi.org/10.1371/J.pone.0151067

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roy SK (1973) Simple and rapid methods for the estimation of total carotenoids pigments in mango. J Food Sci Technol 10(1):45–46

    CAS  Google Scholar 

  60. Seo PJ, Hong SY, Kim SG, Park CM (2011) Competitive inhibition of transcription factors by small interfering peptides. Trends Plant Sci 16(10):541–549. https://doi.org/10.1016/j.tplants.2011.06.001

    CAS  Article  PubMed  Google Scholar 

  61. Sorensen A, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33(2):413–423. https://doi.org/10.1046/j.1365-313X.2003.01644.x

    CAS  Article  PubMed  Google Scholar 

  62. Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, Roustan JP, Bouzayen M, Giuliano G, Chervin C (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 15:114. https://doi.org/10.1186/s12870-015-0495-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16:9. https://doi.org/10.1186/s12864-014-1209-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Tani E, Tsaballa A, Stedel C, Kalloniati C, Papaefthimiou D, Polidoros A, Darzentas N, Ganopoulos I, Flemetakis E, Katinakis P, Tsaftaris A (2011) The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. Plant Physiol Biochem 49(6):654–663. https://doi.org/10.1016/j.plaphy.2011.01.020

    CAS  Article  PubMed  Google Scholar 

  65. Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187(1):57–66. https://doi.org/10.1111/j.1469-8137.2010.03251.x

    CAS  Article  PubMed  Google Scholar 

  66. Tominaga-Wada R, Iwata M, Nukumizu Y, Sano R, Wada T (2012) A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the N-terminal region regulates epidermal hair formation. Plant Sci 183:115–122. https://doi.org/10.1016/j.plantsci.2011.11.010

    CAS  Article  PubMed  Google Scholar 

  67. Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30(3):725–727. https://doi.org/10.1016/0031-9422(91)85241-Q

    CAS  Article  Google Scholar 

  68. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296(5566):343–346. https://doi.org/10.1126/science.1068181

    CAS  Article  PubMed  Google Scholar 

  69. Wang F, Lin R, Feng J, Qiu D, Chen W, Xu S (2015) Wheat bHLH transcription factor gene, TabHLH060, enhances susceptibility of transgenic Arabidopsis thaliana to Pseudomonas syringae. Physiol Mol Plant 90:123–130. https://doi.org/10.1016/j.pmpp.2015.04.007

    CAS  Article  Google Scholar 

  70. Weng L, Bai X, Zhao F, Li R, Xiao H (2016) Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. Plant Biotechnol J 14(12):2310–2321. https://doi.org/10.1111/pbi.12584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056–1059. https://doi.org/10.1126/science.1114358

    CAS  Article  PubMed  Google Scholar 

  72. Xie X, Li S, Zhang R, Zhao J, Chen Y, Zhao Q, Yao Y, You C, Zhang X, Hao Y (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35(11):1884–1897. https://doi.org/10.1111/j.1365-3040.2012.02523.x

    CAS  Article  PubMed  Google Scholar 

  73. Xu R, Goldman S, Coupe S, Deikman J (1996) Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol 31(6):1117–1127. https://doi.org/10.1007/BF00040829

    CAS  Article  PubMed  Google Scholar 

  74. Yin J, Chang X, Kasuga T, Bui M, Reid MS, Jiang C-Z (2015) A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic Res 2:15059. https://doi.org/10.1038/hortres.2015.59

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Yu Y, Liu Z, Wang L, Kim S-G, Seo PJ, Qiao M, Wang N, Li S, Cao X, Park C-M, Xiang F (2016) WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J 85(1):96–106. https://doi.org/10.1111/tpj.13092

    CAS  Article  PubMed  Google Scholar 

  76. Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling H-Q (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385. https://doi.org/10.1038/cr.2008.26

    CAS  Article  PubMed  Google Scholar 

  77. Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, Hu Z (2017) Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci Rep 7(1):5786. https://doi.org/10.1038/s41598-017-04092-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFD0400101), the National Natural Science Foundation of China (31572175), and the Committee of Science and Technology of Chongqing (cstc2014kjcxljrc0020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waseem, M., Li, N., Su, D. et al. Overexpression of a basic helix–loop–helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.). Planta 250, 173–185 (2019). https://doi.org/10.1007/s00425-019-03157-8

Download citation

Keywords

  • bHLH
  • Ethylene
  • Flowering
  • Perception
  • Phytohormone
  • Pigmentation