Skip to main content
Log in

Transient expression of intron-containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In this study, we show that aberrant pre-mRNAs from non-spliced and non-polyadenylated intron-containing transgenes are channelled to the RNA silencing pathway.

In plants, improperly processed transcripts are called aberrant RNAs (ab-RNAs) and are eliminated by either RNA silencing or RNA decay mechanisms. Ab-RNAs transcribed from intronless genes are copied by RNA-directed RNA polymerases (RDRs) into double-stranded RNAs which are subsequently cleaved by DICER-LIKE endonucleases into small RNAs (sRNAs). In contrast, ab-RNAs from intron-containing genes are suggested to be channelled post-splicing to exonucleolytic degradation. Yet, it is not clear how non-spliced aberrant pre-mRNAs are eliminated. We reasoned that transient expression of agroinfiltrated intron-containing transgenes in Nicotiana benthamiana would allow us to study the steady-state levels of non-spliced pre-mRNAs. SRNA deep sequencing of the agroinfiltrated transgenes revealed the presence of sRNAs mapping to the entire non-spliced pre-mRNA suggesting that RDRs (most likely RDR6) processed aberrant non-spliced pre-mRNAs. Primary and secondary sRNAs with lengths of 18–25 nucleotides (nt) were detected, with the most prominent sRNA size class of 22 nt. SRNAs also mapped to the terminator sequence, indicating that RDR substrates also comprised read-through transcripts devoid of polyadenylation tail. Importantly, the occurring sRNAs efficiently targeted cognate mRNA for degradation but failed to cleave the non-spliced pre-mRNA, corroborating the notion that sRNAs are not triggering RNA cleavage in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baeg K, Iwakawa HO, Tomari Y (2017) The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nat Plants 3:17036

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363. https://doi.org/10.1038/nature02874

    Article  CAS  PubMed  Google Scholar 

  • Beclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12(8):684–688

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science (New York, NY) 320(5880):1185–1190

    Article  CAS  Google Scholar 

  • Cao JY, Xu YP, Li W, Li SS, Rahman H, Cai XZ (2016) Genome-wide identification of dicer-like, argonaute, and RNA-dependent RNA polymerase gene families in brassica species and functional analyses of their arabidopsis homologs in resistance to Sclerotinia sclerotiorum. Front Plant Sci 7:1614

    PubMed  PubMed Central  Google Scholar 

  • Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science (New York, NY) 303(5662):1336

    Article  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107(34):15269–15274

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie M, Carroll BJ (2011) SERRATE is required for intron suppression of RNA silencing in Arabidopsis. Plant Signal Behav 6(12):2035–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie M, Brosnan CA, Rothnagel JA, Carroll BJ (2011a) RNA decay and RNA silencing in plants: competition or collaboration? Front Plant Sci 2:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie M, Croft LJ, Carroll BJ (2011b) Intron splicing suppresses RNA silencing in Arabidopsis. Plant J 68(1):159–167

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17(8):997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadami E, Moser M, Zwiebel M, Krczal G, Wassenegger M, Dalakouras A (2013) An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Lett 18(587(6)):706–710

    Article  CAS  Google Scholar 

  • Dadami E, Dalakouras A, Zwiebel M, Krczal G, Wassenegger M (2014) An endogene-resembling transgene is resistant to DNA methylation and systemic silencing. RNA Biol 11(7):934–941. https://doi.org/10.4161/rna.29623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalakouras A, Moser M, Zwiebel M, Krczal G, Hell R, Wassenegger M (2009) A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco. Plant J 60(5):840–851. https://doi.org/10.1111/j.1365-313X.2009.04003.x

    Article  CAS  PubMed  Google Scholar 

  • Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M (2015) Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 12:268–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalakouras A, Wassenegger M, McMillan J, Cardoza V, Maegele I, Dadami E, Runne M, Krczal G, Wassenegger M (2016) Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Front Plant Sci 7:1327. https://doi.org/10.3389/fpls.2016.01327

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101(5):543–553

    Article  CAS  PubMed  Google Scholar 

  • Dalmay T, Horsefield R, Braunstein TH, Baulcombe DC (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20(8):2069–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science (New York, NY) 313(5783):68–71

    Article  CAS  Google Scholar 

  • Dye MJ, Gromak N, Proudfoot NJ (2006) Exon tethering in transcription by RNA polymerase II. Mol Cell 21(6):849–859

    Article  CAS  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147(2):456–468. https://doi.org/10.1104/pp.108.117275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvira-Matelot E, Bardou F, Ariel F, Jauvion V, Bouteiller N, Le Masson I, Cao J, Crespi MD, Vaucheret H (2016) The nuclear ribonucleoprotein SmD1 interplays with splicing, RNA quality control, and posttranscriptional gene silencing in Arabidopsis. Plant Cell 28(2):426–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7(11):1168–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science (New York, NY) 306(5698):1046–1048

    Article  CAS  Google Scholar 

  • Goodall GJ, Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10(9):2635–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science (New York, NY) 286(5441):950–952

    Article  CAS  Google Scholar 

  • Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T (2011) Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci USA 108(1):409–414

    Article  PubMed  Google Scholar 

  • Huang Y, Carmichael GG (1996) Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol 16(4):1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno T, Lin WD, Fu JL, Chang CL, Matzke AJM, Matzke M (2017) A genetic screen for pre-mRNA splicing mutants of Arabidopsis thaliana identifies putative U1 snRNP components RBM25 and PRP39a. Genetics 207(4):1347–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K (2016) Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathog 12(10):e1005936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koscianska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M (2005) Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59(4):647–661

    Article  CAS  PubMed  Google Scholar 

  • Kumakura N, Takeda A, Fujioka Y, Motose H, Takano R, Watanabe Y (2009) SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett 583(8):1261–1266. https://doi.org/10.1016/j.febslet.2009.03.055

    Article  CAS  PubMed  Google Scholar 

  • Ling Y, Alshareef S, Butt H, Lozano-Juste J, Li L, Galal AA, Moustafa A, Momin AA, Tashkandi M, Richardson DN, Fujii H, Arold S, Rodriguez PL, Duque P, Mahfouz MM (2017) Pre-mRNA splicing repression triggers abiotic stress signaling in plants. Plant J 89(2):291–309

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Goodall GJ, Kole R, Filipowicz W (1995) Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5′ but not the 3′ splice site inhibit intron processing in Nicotiana plumbaginifolia. EMBO J 14(2):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19(3):943–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA 109(7):2461–2466

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez de Alba AE, Moreno AB, Gabriel M, Mallory AC, Christ A, Bounon R, Balzergue S, Aubourg S, Gautheret D, Crespi MD, Vaucheret H, Maizel A (2015) In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. Nucleic Acids Res 43(5):2902–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHale M, Eamens AL, Finnegan EJ, Waterhouse PM (2013) A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76(3):519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mette MF, van der Winden J, Matzke MA, Matzke AJ (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18(1):241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw P, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202. https://doi.org/10.1093/bib/bbs012

    Article  CAS  PubMed  Google Scholar 

  • Mlotshwa S, Pruss GJ, Gao Z, Mgutshini NL, Li J, Chen X, Bowman LH, Vance V (2010) Transcriptional silencing induced by Arabidopsis T-DNA mutants is associated with 35S promoter siRNAs and requires genes involved in siRNA-mediated chromatin silencing. Plant J 64(4):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasugi K, Crowhurst RN, Bally J, Wood CC, Hellens RP, Waterhouse PM (2013) De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8(3):e59534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhulu SB, Deng XB, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G, Di Serio F, Burgyan J (2009) Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One 4(11):e7686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent JS, Bouteiller N, Elmayan T, Vaucheret H (2015a) Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant J 81(2):223–232. https://doi.org/10.1111/tpj.12720

    Article  CAS  PubMed  Google Scholar 

  • Parent JS, Jauvion V, Bouche N, Beclin C, Hachet M, Zytnicki M, Vaucheret H (2015b) Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res 43(17):8464–8475. https://doi.org/10.1093/nar/gkv753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polydore S, Axtell MJ (2018) Analysis of RDR1/RDR2/RDR6-independent small RNAs in Arabidopsis thaliana improves MIRNA annotations and reveals unexplained types of short interfering RNA loci. Plant J 94(6):1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17(20):6086–6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwach F, Moxon S, Moulton V, Dalmay T (2009) Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genom Proteom 8(6):472–481

    Article  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Taochy C, Gursanscky NR, Cao J, Fletcher SJ, Dressel U, Mitter N, Tucker MR, Koltunow AMG, Bowman JL, Vaucheret H, Carroll BJ (2017) A genetic screen for impaired systemic RNAi highlights the crucial role of DICER-LIKE 2. Plant Physiol 175(3):1424–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinland B, Hohn B, Puchta H (1994) Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci USA 91(17):8000–8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14(4):857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJ, Tijsterman M (2016) T-DNA integration in plants results from polymerase-theta-mediated DNA repair. Nat Plants 2(11):16164

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771. https://doi.org/10.1101/gad.1410506

    Article  CAS  PubMed  Google Scholar 

  • Vermeersch L, De Winne N, Depicker A (2010) Introns reduce transitivity proportionally to their length, suggesting that silencing spreads along the pre-mRNA. Plant J 64(3):392–401

    Article  CAS  PubMed  Google Scholar 

  • Vogt U, Pelissier T, Putz A, Razvi F, Fischer R, Wassenegger M (2004) Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. Plant J 38(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11(4):464–470

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389(6651):553

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11(3):142–151. https://doi.org/10.1016/j.tplants.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76(3):567–576

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Hou BH, Lee WC, Lu SH, Yang CJ, Vaucheret H, Chen HM (2017) DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation. Plant J 90(6):1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Carter SA, Cole AB, Cheng NH, Nelson RS (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci USA 101(16):6297–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Guenther Buchholz for providing the plasmid pBAM-dTOM and Mario Braun for providing the plant codon-optimized dTOMATO sequence. This project was supported by the German Research Foundation (DFG; Grant WA 1019/14-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Athanasios Dalakouras or Michael Wassenegger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalakouras, A., Lauter, A., Bassler, A. et al. Transient expression of intron-containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs. Planta 249, 457–468 (2019). https://doi.org/10.1007/s00425-018-3015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3015-6

Keywords

Navigation