Skip to main content
Log in

Reconstruction of root systems in Cryptomeria japonica using root point coordinates and diameters

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We developed simple algorithms for reconstructing tree root system architecture using only the root point coordinate and diameter, which can be systematically obtained without digging up the root systems.

Root system architecture (RSA) is strongly related to various root functions of the tree. The aim of this study was to develop a three-dimensional (3D) RSA model using systematically obtained information on root locations and root diameters at the locations. We excavated root systems of Cryptomeria japonica and systematically obtained XYZ coordinates and root diameters using a 10-cm grid. We clarified the patterns of the root point connections and developed a reconstructed root system model. We found that the root diameters farther from the stump centre are smaller. Additionally, we found that the root lengths of the segments running between the base and the connected root point were smaller than those of other root segments, and the inner angle between the base and the stump and between the base and the connected root point was narrower than for the other pairs. The new RSA model developed according to these results had average accuracies of 0.64 and 0.80 for estimates of total volume and length, respectively. The developed model can estimate 3D RSA using only root point data, which can be obtained without digging up root systems. This suggests a wide applicability of this model in root function evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal condition. Tree Physiol 24:1323–1331

    Article  PubMed  Google Scholar 

  • Borden KA, Thomas SC, Isaac ME (2017) Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant Soil 410:323–334

    Article  CAS  Google Scholar 

  • Butnor JR, Doolittle JA, Kress L, Cohen S, Johnsen KH (2001) Use of ground-penetrating radar to study tree roots in the Southeastern United States. Tree Physiol 21:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter—the unbutton model. Soil Biol Biochem 84:168–176

    Article  CAS  Google Scholar 

  • Cui X, Guo L, Chen J, Chen X, Zhu X (2013) Estimating tree-root biomass in different depths using ground-penetrating radar: evidence from a controlled experiment. IEEE Trans Geosci Remote Sens 51:3410–3423

    Article  Google Scholar 

  • Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34

    Article  CAS  Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258

    Article  CAS  Google Scholar 

  • Danjon F, Khuder H, Stokes A (2013) Deep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model. PLoS One 8:e83548. https://doi.org/10.1371/journal.pone.0083548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannoura M, Hirano Y, Igarashi T, Ishii M, Aono K, Yamase K, Kanazawa Y (2008) Detection of Cryptomeria japonica roots with ground penetrating radar. Plant Biosyst 142:375–380

    Article  Google Scholar 

  • Dorval AD, Meredieu C, Danjon F (2016) Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs. Ann Bot 118:747–762

    Article  Google Scholar 

  • Drexhage M, Gruber F (1999) Above- and below-stump relationships for Picea abies: estimating root system biomass from breast-height diameters. Scand J For Res 14:328–333

    Article  Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant-root systems. New Phytol 106:61–77

    Article  Google Scholar 

  • Gärtner H, Wagner B, Heinrich I, Denier C (2009) 3D laser scanning—a new methodology to analyze coarse tree root systems. For Snow Landsc Res 82:95–106

    Google Scholar 

  • Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61

    Article  CAS  Google Scholar 

  • Godin C, Costes E, Caraglio Y (1997) Exploring plant topological structure with the AMAPmod software: an outline. Silva Fenn 31:355–366

    Article  Google Scholar 

  • Guo L, Chen J, Cui X, Fan B, Lin H (2013) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23

    Article  CAS  Google Scholar 

  • Guo L, Wu Y, Chen J, Hirano Y, Tanikawa T, Li W, Cui X (2015) Calibrating the impact of root orientation on root quantification using ground-penetrating radar. Plant Soil 395:289–305

    Article  CAS  Google Scholar 

  • Hirano Y, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2009) Limiting factor in the detection of tree roots using ground-penetrating radar. Plant Soil 319:15–24

    Article  CAS  Google Scholar 

  • Hirano Y, Yamamoto R, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2012) Detection frequency of Pinus thunbergii roots by ground penetrating radar is related to root biomass. Plant Soil 360:363–373

    Article  CAS  Google Scholar 

  • Hruška J, Cermak J, Sustek S (1999) Mapping tree root systems with ground penetrating radar. Tree Physiol 19:125–130

    Article  PubMed  Google Scholar 

  • Jourdan C, Rey H (1997) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jarq) root system-1. The model. Plant Soil 190:217–233

    Article  CAS  Google Scholar 

  • Liang T, Knappett JA, Bengough AG, Ke YX (2017) Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides 14:1747–1765

    Article  Google Scholar 

  • Namm BH, Berrill J-P (2016) Tanoak (Notholithocarpus densiflorus) coarse root morphology: prediction models for volume and biomass of individual roots. Open J For 6:1–13

    Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:899–904

    Article  Google Scholar 

  • Ozier-Lafontaine H, Lecompte F, Sillon JF (1999) Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size, and mass. Model development and evaluation in agroforestry. Plant Soil 209:167–180

    Article  CAS  Google Scholar 

  • Pratt RB, Jacobsen AL, North GB, Sack L, Schenk HJ (2008) Plant hydraulics: new discoveries in the pipeline. New Phytol 179:590–593

    Article  PubMed  Google Scholar 

  • Salas E, Ozier-Lafontaine H, Nygren P (2004) A fractal model applied for estimating root biomass and architecture in two tropical legume tree species. Ann For Sci 61:337–345

    Article  Google Scholar 

  • Sorgonà A, Proto AR, Abenavoli LM, Di Iorio A (2018) Spatial distribution of coarse root biomass and carbon in a high-density olive orchard: effects of mechanical harvesting methods. Trees. https://doi.org/10.1007/s00468-018-1686-z

    Article  Google Scholar 

  • Stokes A, Nicoll BC, Coutts MP, Fitter AH (1997) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development and resistance to bending. Can J For Res 27:1049–1057

    Article  Google Scholar 

  • Tanikawa T, Hirano Y, Dannoura M, Yamase K, Aono K, Ishii M, Igarashi T, Ikeno H, Kanazawa Y (2013) Root orientation can affect detection accuracy of ground-penetrating radar. Plant Soil 373:317–327

    Article  CAS  Google Scholar 

  • Tanikawa T, Ikeno H, Dannoura M, Yamase K, Aono K, Hirano Y (2016) Leaf litter thickness, but not plant species, can affect root detection by ground penetrating radar. Plant Soil 408:271–283

    Article  CAS  Google Scholar 

  • Tobin B, Čermák J, Chiatante D, Danjon F, Di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski LR, Nadezhdina N, Nicoll B, Pagès L, Silva J, Spanos I (2007) Towards developmental modeling of tree root systems. Plant Biosyst 141:481–501

    Article  Google Scholar 

  • Wu Y, Guo L, Cui XH, Chen J, Cao X, Lin H (2014) Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant Soil 383:155–172

    Article  CAS  Google Scholar 

  • Yamase K, Tanikawa T, Dannoura M, Ohashi M, Todo C, Ikeno H, Aono K, Hirano Y (2018) Ground penetrating radar estimates of tree root diameter and distribution under field conditions. Trees. https://doi.org/10.1007/s00468-018-1741-9

    Article  Google Scholar 

  • Zenone T, Morelli G, Teobaldelli M, Fischanger F, Matteucci M, Sordini M, Armani A, Ferre C, Chiti T, Seufert G (2008) Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct Plant Biol 35:1047–1058

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate H. Hagino, T. Chikaguchi, S. Narayama, H. Kurokawa, Y. Yamamoto (FFPRI), K. Okada, M. Takano (Nagoya Univ.), M. Hiraoka (Tokyo Univ. Agr. Tech.), Y. Shinohara (Kyushu Univ.), N. Makita, K. Tsuruta, and J. Tsuruta (Kyoto Univ.) for their field assistance and valuable comments on this study. This work was partially supported by the Japanese Society for the Promotion of Science KAKENHI (Grant numbers: 25252027, 18H02243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizue Ohashi.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohashi, M., Ikeno, H., Sekihara, K. et al. Reconstruction of root systems in Cryptomeria japonica using root point coordinates and diameters. Planta 249, 445–455 (2019). https://doi.org/10.1007/s00425-018-3011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3011-x

Keywords

Navigation