Skip to main content
Log in

Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The Mg2+ uptake system in Arabidopsis roots is Gd3+- and Fe2+-sensitive, and responds to a changing Mg2+ concentration within 1 h with the participation of AtMRS2 transporters.

Abstract

Magnesium (Mg2+) absorption and the mechanism regulating its activity have not been clarified yet. To address these issues, it is necessary to reveal the characteristics of Mg2+ uptake in roots. Therefore, we first investigated the Mg2+ uptake characteristics in roots of 1-week-old Arabidopsis plants using 28Mg. The Mg2+ uptake system in roots was up-regulated within 1 h in response to the low Mg2+ condition. This induction was inhibited in Arabidopsis “mitochondrial RNA splicing 2/magnesium transport” mutants atmrs2-4/atmgt6 and atmrs2-7/atmgt7, while the expression of AtMRS2-4/AtMGT6 and AtMRS2-7/AtMGT7 genes in the Arabidopsis wild-type was not responsive to Mg2+ conditions. In addition, the Mg deficiency-induced Mg2+ uptake system was shut-down within 5 min when Mg2+ was resupplied to the environment. An inhibition study showed that the constitutive mechanism functioning in Mg2+ uptake under Mg2+ sufficient conditions was sensitive to a number of divalent and trivalent cations, particularly Gd3+ and Fe2+, but not to K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CoHEX:

Hexammine cobalt(III) chloride

MGT:

Magnesium transport

MRS2:

Mitochondrial RNA splicing 2

References

  • Chen J, Li LG, Liu ZH, Yuan YJ, Guo LL, Mao DD, Tian LF, Chen LB, Luan S, Li DP (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19:887–898

    Article  Google Scholar 

  • Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh R, Gilliham M (2011) Magnesium transporters, MGT2⁄MRS2-1 and MGT3⁄MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol 190:583–594

    Article  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  Google Scholar 

  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    Article  CAS  Google Scholar 

  • Gebert M, Meschenmoser K, Svidova S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2⁄MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21:4018–4030

    Article  CAS  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 2:83–91

    Article  Google Scholar 

  • Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5:1170–1183

    Article  CAS  Google Scholar 

  • Iwata R, Kawamura M, Kimura S (1992) Chromatographic purification of no-carrier-added magnesium-28 for biological studies. J Radioanal Nucl Chem 159:233–237

    Article  CAS  Google Scholar 

  • Kamiya T, Yamagami M, Hirai MY, Fujiwara T (2012) Establishment of an in planta magnesium monitoring system using CAX3 promoter-luciferase in Arabidopsis. J Exp Bot 63:355–363

    Article  CAS  Google Scholar 

  • Knoop V, Groth-Malonek M, Gebert M, Eifler K, Weyand K (2005) Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol Genet Genom 274:205–216

    Article  CAS  Google Scholar 

  • Kobayashi NI, Tanoi K (2015) Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int J Mol Sci 16:23076–23093

    Article  CAS  Google Scholar 

  • Kobayashi NI, Iwata N, Saito T, Suzuki H, Iwata R, Tanoi K, Nakanishi TM (2013) Application of 28Mg for characterization of Mg uptake in rice seedling under different pH conditions. J Radioanal Nucl Chem 296:531–534

    Article  CAS  Google Scholar 

  • Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiguchi T, Nayef M, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670

    Article  CAS  Google Scholar 

  • Kucharski LM, Lubbe WJ, Maguire ME (2000) Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem 275:16767–16773

    Article  CAS  Google Scholar 

  • Lenz H, Dombinov V, Dreisten J, Reinhard MR, Gebert M, Knoop V (2013) Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant Cell Physiol 54:1118–1131

    Article  CAS  Google Scholar 

  • Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  CAS  Google Scholar 

  • Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1:675–685

    Article  CAS  Google Scholar 

  • Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F (2017) Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 gene cause leaf reticulation. Front Plant Sci. https://doi.org/10.3389/fpls.2017.02007

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26:2234–2248

    Article  CAS  Google Scholar 

  • Oda K, Kamiya T, Shikanai Y, Shigenobu S, Yamaguchi K, Fujiwara T (2016) The Arabidopsis Mg transporter, MRS2-4, is essential for Mg homeostasis under both low and high Mg conditions. Plant Cell Physiol 57:754–763

    Article  CAS  Google Scholar 

  • Pisat NP, Pandey A, MacDiarmid CW (2009) MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae. Genetics 183:873–884

    Article  CAS  Google Scholar 

  • Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell Environ 36:844–855

    Article  CAS  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501

    Article  CAS  Google Scholar 

  • Sun Y, Yang R, Li L, Huang J (2017) The magnesium transporter MGT10 is essential for chloroplast development and photosynthesis in Arabidopsis thaliana. Mol Plant 10:1584–1587

    Article  CAS  Google Scholar 

  • Tanoi K, Kobayashi NI (2015) Leaf senescence by magnesium deficiency. Plants 4:756–772

    Article  CAS  Google Scholar 

  • Tanoi K, Kobayashi NI, Saito T, Iwata N, Kamada R, Iwata R, Suzuki H, Hirose A, Ohmae Y, Sugita R, Nakanishi TM (2014) Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28Mg as a tracer. Plant Soil 384:69–77

    Article  CAS  Google Scholar 

  • Yan YW, Mao DD, Yang L, Qi JL, Zhang XX, Tang QL, Li YP, Tang RJ, Luan S (2018) Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Front Plant Sci 9:274. https://doi.org/10.3389/fpls.2018.00274

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Martin O’Brien for English editing. This work was partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (number 17K15236), JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (15H02469) and JST PROSTO (number JPMJPR15Q7). This work was also sponsored by JSPS and F.R.S.-FNRS under the Japan - Belgium Research Cooperative Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitaro Tanoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogura, T., Kobayashi, N.I., Suzuki, H. et al. Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies. Planta 248, 745–750 (2018). https://doi.org/10.1007/s00425-018-2936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2936-4

Keywords

Navigation