Planta

pp 1–21 | Cite as

Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco

  • Yang Zhang
  • Hongyan Zhao
  • Shiyi Zhou
  • Yuan He
  • Qingchen Luo
  • Fan Zhang
  • Ding Qiu
  • Jialu Feng
  • Qiuhui Wei
  • Lihong Chen
  • Mingjie Chen
  • Junli Chang
  • Guangxiao Yang
  • Guangyuan He
Original Article

Abstract

Main conclusion

TaGF14b enhances tolerance to multiple stresses through ABA signaling pathway by altering physiological and biochemical processes, including ROS-scavenging system, stomatal closure, compatible osmolytes, and stress-related gene expressions in tobaccos.

The 14-3-3 proteins are involved in plant growth, development, and in responding to abiotic stresses. However, the precise functions of 14-3-3s in responding to drought and salt stresses remained unclear, especially in wheat. In this study, a 14-3-3 gene from wheat, designated TaGF14b, was cloned and characterized. TaGF14b was upregulated by polyethylene glycol 6000, sodium chloride, hydrogen peroxide, and abscisic acid (ABA) treatments. Ectopic expression of TaGF14b in tobacco conferred enhanced tolerance to drought and salt stresses. Transgenic tobaccos had longer root, better growth status, and higher relative water content, survival rate, photosynthetic rate, and water use efficiency than control plants under drought and salt stresses. The contribution of TaGF14b to drought and salt tolerance relies on the regulations of ABA biosynthesis and ABA signaling, as well as stomatal closure and stress-related gene expressions. Moreover, TaGF14b expression could significantly enhance the reactive oxygen species (ROS) scavenging system to ameliorate oxidative damage to cells. In addition, TaGF14b increased tolerance to osmotic stress evoked by drought and salinity through modifying water conservation and compatible osmolytes in plants. In conclusion, TaGF14b enhances tolerance to multiple abiotic stresses through the ABA signaling pathway in transgenic tobaccos by altering physiological and biochemical processes.

Keywords

ABA Drought and salt stresses Oxidative damage ROS-scavenging system TaGF14b Wheat 

Abbreviations

ABF

ABA-responsive element-binding transcription factor

CAT

Catalase

DAB

3,3′-Diaminobenzidine

DREB3

Dehydration-responsive element-binding protein

DPI

Diphenyleneiodonium

GFP

Green fluorescent protein

LTP1

Lipid transfer protein

MDA

Malondialdehyde

NBT

Nitroblue tetrazolium

NCED1

9-cis-Epoxycarotenoid dioxygenase 1

OE

Overexpression

P5CS

Pyrroline-5-carboxylate synthetase

Pn

Photosynthetic rate

POD

Peroxidase

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Tu

Sodium tungstate

VC

Vector control

WT

Wild type

WUE

Water use efficiency

Notes

Acknowledgements

The work was supported by National Genetically Modified New Varieties of Major Projects of China (2016ZX08010004-004), the National Natural Science Foundation of China (Nos. 31771418, 31570261), and Key Project of Hubei Province (2017AHB041).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

425_2018_2887_MOESM1_ESM.tif (13.7 mb)
Fig. S1 Subcellular localization of TaGF14b. The control pBI121-GFP (a) and recombined pBI121-TaGF14b-GFP (b) vectors were transiently expressed in onion epidermal cells and observed with fluorescence microscope, respectively (TIFF 14002 kb)
425_2018_2887_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)
425_2018_2887_MOESM3_ESM.docx (23 kb)
Supplementary material 3 (DOCX 23 kb)

References

  1. Amara I, Odena A, Oliveira E, Moreno A, Masmoudi K, Pages M, Goday A (2012) Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiol 53:312–329CrossRefPubMedGoogle Scholar
  2. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  3. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  4. Benzinger A, Popowicz GM, Joy JK, Majumdar S, Holak TA, Hermeking H (2005) The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res 15:219–227CrossRefPubMedGoogle Scholar
  5. Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, San SB (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999CrossRefPubMedGoogle Scholar
  6. Cao H, Xu Y, Yuan L, Bian Y, Wang L, Zhen S, Hu Y, Yan Y (2016) Molecular characterization of the 14-3-3 gene family in Brachypodium distachyon L. reveals high evolutionary conservation and diverse responses to abiotic stresses. Front Plant Sci 7:1099.  https://doi.org/10.3389/fpls.2016.01099 PubMedPubMedCentralGoogle Scholar
  7. Catala R, Lopez-Cobollo R, Mar CM, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen S, Hajirezaei M, Bornke F (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol 139:1163–1174CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13:53–63CrossRefPubMedGoogle Scholar
  10. Choulet F, Alberti A, Theil S et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721CrossRefPubMedGoogle Scholar
  11. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679CrossRefPubMedGoogle Scholar
  12. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE 8:e69881CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525CrossRefPubMedGoogle Scholar
  14. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445CrossRefPubMedPubMedCentralGoogle Scholar
  15. Geilfus CM, Mithöfer A, Ludwig Müller J, Zörb C, Muehling KH (2015) Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba. New Phytol 208:803CrossRefPubMedGoogle Scholar
  16. Goda H, Sasaki E, Akiyama K et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542CrossRefPubMedGoogle Scholar
  17. Gong C, Cao S, Fan R, Wei B, Chen G, Wang X, Li Y, Zhang X (2013) Identification and phylogenetic analysis of a CC-NBS-LRR encoding gene assigned on chromosome 7B of wheat. Int J Mol Sci 14:15330–15347CrossRefPubMedPubMedCentralGoogle Scholar
  18. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45CrossRefPubMedGoogle Scholar
  19. He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J (2015) Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J Exp Bot 66:2271–2281CrossRefPubMedPubMedCentralGoogle Scholar
  20. He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G, He G (2017) A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8:340.  https://doi.org/10.3389/fpls.2017.00340 PubMedPubMedCentralGoogle Scholar
  21. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol R 66:300CrossRefGoogle Scholar
  22. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1230CrossRefGoogle Scholar
  23. Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38CrossRefPubMedGoogle Scholar
  24. Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464CrossRefPubMedGoogle Scholar
  25. Ikeda Y, Koizumi N, Kusano T, Sano H (2000) Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem 275:41528PubMedGoogle Scholar
  26. Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95CrossRefPubMedGoogle Scholar
  27. Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273CrossRefPubMedGoogle Scholar
  28. Kishor PBK, Hong Z, Miao G, Hu CA, Verma DPS (1995) Overexpression of DELTA-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li J, Besseau S, Toronen P, Sipari N, Kollist H, Holm L, Palva ET (2013a) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li J, Song S, Zhao Y, Guo W, Guo G, Peng H, Ni Z, Sun Q, Yao Y (2013b) Wheat 14-3-3 protein conferring growth retardation in Arabidopsis. J Integr Agric 12:209–217CrossRefGoogle Scholar
  32. Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959CrossRefPubMedGoogle Scholar
  33. Liu Q, Zhang S, Liu B (2016) 14-3-3 proteins: macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochem Bioph Res Commun 477:9–13CrossRefGoogle Scholar
  34. Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S (2017) Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell 66:117–128CrossRefPubMedGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  36. Manuel Ruiz-Lozano J, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044CrossRefGoogle Scholar
  37. Meng X, Chen X, Wang Y, Xiao R, Liu H, Wang X, Ren J, Li Y, Niu H, Wang X, Yin J (2014) Characterization and subcellular localization of two 14-3-3 genes and their response to abiotic stress in wheat. Sheng Wu Gong Cheng Xue Bao 30:232–246PubMedGoogle Scholar
  38. Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49:481–487CrossRefPubMedGoogle Scholar
  39. Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671CrossRefPubMedGoogle Scholar
  40. Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107CrossRefPubMedGoogle Scholar
  41. Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ (2012) 14-3-3 phosphoprotein interaction networks-does isoform diversity present functional interaction specification? Front Plant Sci 3:190.  https://doi.org/10.3389/fpls.2012.00190 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C (2016) Genome-wide identification and expression analysis of the 14-3-3 family genes in Medicago truncatula. Front Plant Sci 7:320.  https://doi.org/10.3389/fpls.2016.00320 PubMedPubMedCentralGoogle Scholar
  43. Quiapim AC, Brito MS, Bernardes LAS, DaSilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149:1211–1230CrossRefPubMedPubMedCentralGoogle Scholar
  44. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401CrossRefPubMedGoogle Scholar
  45. Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A, Ghigo D (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem 279:47726–47731CrossRefPubMedGoogle Scholar
  46. Schoonheim PJ, Costa Pereira DD, De Boer AH (2009) Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32:439–447CrossRefPubMedGoogle Scholar
  47. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658CrossRefPubMedGoogle Scholar
  48. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302CrossRefPubMedGoogle Scholar
  49. Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33:1838–1851CrossRefPubMedGoogle Scholar
  50. Sun X, Luo X, Sun M, Chen C, Ding X, Wang X, Yang S, Yu Q, Jia B, Ji W, Cai H, Zhu Y (2014) A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 55:99–118CrossRefPubMedGoogle Scholar
  51. Sun X, Sun M, Jia B, Chen C, Qin Z, Yang K, Shen Y, Meiping Z, Mingyang C, Zhu Y (2015) A 14-3-3 family protein from wild soybean (Glycine Soja) regulates ABA sensitivity in Arabidopsis. PLoS One 10:e0146163.  https://doi.org/10.1371/journal.pone.0146163 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takahashi Y, Kinoshita T, Shimazaki K (2007) Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA. Plant Cell Physiol 48:1182–1191CrossRefPubMedGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tan T, Cai J, Zhan E, Yang Y, Zhao J, Guo Y, Zhou H (2016) Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis. Plant Mol Biol 92:391–400CrossRefPubMedGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang C, Ma Q, Lin Z, He P, Liu J (2009) Cloning and characterization of a cDNA encoding 14-3-3 protein with leaf and stem-specific expression from wheat. DNA Seq 19:130–136CrossRefGoogle Scholar
  57. Wang Z, Wei P, Wu M, Xu Y, Li F, Luo Z, Zhang J, Chen A, Xie X, Cao P, Lin F, Yang J (2015) Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153–166CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang X, Wang Y, Xiao R, Chen X, Ren J (2016) Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.). Crop J 4:188–198CrossRefGoogle Scholar
  59. Wang C, Lu G, Hao Y, Guo H, Guo Y, Zhao J, Cheng H (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469CrossRefPubMedGoogle Scholar
  60. Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G (2017) A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374.  https://doi.org/10.3389/fpls.2017.01374 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014CrossRefPubMedGoogle Scholar
  62. Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076CrossRefPubMedGoogle Scholar
  63. Yang L, You J, Wang Y, Li J, Quan W, Yin M, Wang Q, Chan Z (2017) Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol Biochem 117:1–11CrossRefPubMedGoogle Scholar
  64. Yashvardhini N, Bhattacharya S, Chaudhuri S, Sengupta DN (2018) Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. Planta 247:229–253CrossRefPubMedGoogle Scholar
  65. Zeng D, Luo J, Li Z, Chen G, Zhang L, Ning S, Yuan Z, Zheng Y, Hao M, Liu D (2016) High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS One 11:e162847Google Scholar
  66. Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 7:e52439CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhou H, Lin H, Chen S, Becker K, Yang Y, Zhao J, Kudla J, Schumaker KS, Guo Y (2014) Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26:1166–1182CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Zhang
    • 1
  • Hongyan Zhao
    • 1
  • Shiyi Zhou
    • 2
  • Yuan He
    • 1
  • Qingchen Luo
    • 1
  • Fan Zhang
    • 1
  • Ding Qiu
    • 1
  • Jialu Feng
    • 1
  • Qiuhui Wei
    • 1
  • Lihong Chen
    • 1
  • Mingjie Chen
    • 1
  • Junli Chang
    • 1
  • Guangxiao Yang
    • 1
  • Guangyuan He
    • 1
  1. 1.The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life SciencesHubei University of EducationWuhanChina

Personalised recommendations