Skip to main content
Log in

Mining of favorable alleles for lodging resistance traits in rice (oryza sativa) through association mapping

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Fourteen new quantitative trait loci (QTLs) and ten favorable alleles were identified for lodging resistance traits in a natural population of rice. Parental combinations were designed to improve lodging resistance.

Lodging is one of the most critical constraints to rice yield, and therefore, mining favorable alleles for lodging resistance traits is imperative for the advancement of cultivated rice and selection for market demand. This investigation was performed on a selected sample of 521 rice cultivars using 262 SSR markers in 2016 and 2017. Lodging resistance traits were evaluated by plant height (PH), stem length (SL), stem diameter (SD), anti-thrust per stem (AT/S), and stem index (SI), with AT/S, used as the lodging resistance index. A genome-wide association map was generated by combining phenotypic and genotypic data. Eight subpopulations were found by structure software, and the linkage disequilibrium (LD) ranged from 30 to 80 cM. Identification of 68 marker–trait associations (MTAs) linking in 64 SSR markers for five traits was done. QTL were detected, including 15 for PH, 14 for SL, 14 for SD, 7 for AT/S, and 18 for SI. A number of favorable alleles were also discovered, including 22, 24, 19, 12, and 28 alleles for PH, SL, SD, AT/S, and SI, respectively. These favorable alleles might be used to design parental combinations, and the predictable results found by relieving the favorable alleles per QTL. The accessions containing favorable alleles for lodging resistant traits mined in this study could be useful for breeding superior rice cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All the rice seeds used in this research were collected during long-term rice science studies and properly kept in our State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University. Accession numbers 1–543 were selected from our previous studies on rice grain sizes and weight (Rf. https://www.frontiersin.org/articles/10.3389/fpls.2016.00787/full).

Abbreviations

ANOVA:

Analysis of variance

AT/S:

Anti-thrust per stem

GWA:

Genome-wide association

\(H_{\text{B}}^{2}\) :

Heritability in the broad sense

LD:

Linkage disequilibrium

MAS:

Marker-assisted selection

MTAs:

Marker–trait associations

PH:

Plant height

PIC:

Polymorphic information content

PVE:

Proportion of phenotypic variance explained

QTL:

Quantitative trait locus

SD:

Stem diameter

SI:

Stem index

SL:

Stem length

SSR:

Simple sequence repeat

References

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. PNAS 96:10284–10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter PR, Hudelson KD (1988) Influence of simulated wind lodging on corn growth and grain yield. J Prod Agric 1:295–299. https://doi.org/10.2134/jpa1988.0295

    Article  Google Scholar 

  • Chandler RF Jr (1969) Plant morphology and stand geometry in relation to nitrogen. Agronomy and Horticulture Department (Digital Commons), University of Nebraska–Lincoln. 196. http://digitalcommons.unl.edu/agronomyfacpub/196. Accessed 2 Feb 2018

  • Chang T-T, Vergara BS (1972) Ecological and genetic information on adaptability and yielding ability in tropical rice varieties. In: Rice breeding. International Rice Research Institute, Los Baños, Philippines, pp 431–453

    Google Scholar 

  • Chen GH, Deng HB, Zhang GL, Tang WB, Huang H (2016) The correlation of stem characters and lodging resistance and combining ability analysis in rice. Sci Agric Sin 49:407–417. https://doi.org/10.3864/j.issn.0578-1752.2016.03.001 (in Chinese)

    Article  CAS  Google Scholar 

  • Dang XJ, Tran TTG, Dong GS, Wang H, Edzesi MW, Hong DL (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Dang X, Liu E, Liang Y, Liu Q, Breria CM, Hong D (2016) QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping. Front Plant Sci 7:1188. https://doi.org/10.3389/fpls.2016.01188

    Article  PubMed  PubMed Central  Google Scholar 

  • Edzesi WM, Dang X, Liang L, Liu E, Zaid IU, Hong D (2016) Genetic diversity and elite allele mining for grain traits in rice (Oryza sativa L.) by association mapping. Front Plant Sci 7:787

    Article  PubMed  PubMed Central  Google Scholar 

  • De Koeyer D, Tinker N, Wight C, Deyl J, Burrows V, O’Donoughue L, Lybaert A, Molnar S, Armstrong K, Fedak G (2004) A molecular linkage map with associated QTLs from a hulless × covered spring oat population. Theor Appl Genet 108:1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Easson D, White E, Pickles S (1993) The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. J Agric Sci 121:145–156

    Article  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and indian mustard (Brassica juncea). Environ Sci Technol 32:802–806. https://doi.org/10.1021/es970698p

    Article  CAS  Google Scholar 

  • Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72:297–302. https://doi.org/10.1104/pp.72.2.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Resour 7:574–578

    Article  CAS  Google Scholar 

  • Fan S, Brzeska J (2014) Feeding more people on an increasingly fragile planet: China’s food and nutrition security in a national and global context. J Integr Agric 13:1193–1205

    Article  Google Scholar 

  • FAO I (2016) WFP (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: Taking stock of uneven progress. Food and Agriculture Organization Publications, Rome

  • Farnir F, Coppieters W, Arranz J-J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Myriam M et al (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  CAS  PubMed  Google Scholar 

  • Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. PNAS 96:7575–7580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GRiSP (2013) Rice almanac, 4th edn. International Rice Research Institute, Los Baños

    Google Scholar 

  • Hirano K, Ordonio RL, Matsuoka M (2017) Engineering the lodging resistance mechanism of post-green revolution rice to meet future demands. Proc Jpn Acad Ser B Phys Biol Sci 93:220–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Hojyo Y (1974) Lodging and stiffness of culms in crops. Agric Technol 29:157–162

    Google Scholar 

  • Holland JB, Moser HS, O’donoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37:1306–1316

    Article  Google Scholar 

  • Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Peng S, Visperas RM, Ereful N, Bhuiya MSU, Julfiquar A (2007) Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res 101:240–248

    Article  Google Scholar 

  • Kashiwagi T, Ishimaru K (2004) Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol 134:676–683. https://doi.org/10.1104/pp.103.029355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi T, Sasaki H, Ishimaru K (2005) Factors responsible for decreasing sturdiness of the lower part in lodging of rice (Oryza sativa L.). Plant Prod Sci 8:166–172. https://doi.org/10.1626/pps.8.166

    Article  Google Scholar 

  • Kashiwagi T, Madoka Y, Hirotsu N, Ishimaru K (2006) Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem 44:152–157

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K (2008) Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor Appl Genet 117:749–757

    Article  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Kwak M, Kami JA, Gepts P (2009) The putative Mesoamerican domestication center of is located in the Lerma–Santiago Basin of Mexico. Crop Sci 49:554–563

    Article  Google Scholar 

  • Lang Y-Z, Yang X-D, Wang M-E, Zhu Q-S (2012) Effects of lodging at different filling stages on rice yield and grain quality. Rice Sci 19:315–319

    Article  Google Scholar 

  • Larson JC, Maranville JW (1977) Alterations of yield, test weight, and protein in lodged grain sorghum. Agron J 69:629–630. https://doi.org/10.2134/agronj1977.00021962006900040027x

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G (2017) The genetic and molecular basis of crop height based on a rice model. Planta 247:1–26

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Kawahara H, Chonan N (1983) Histological studies on breaking resistance of lower internodes in rice culm. IV. The rules of each tissue of internode and leaf sheath in breaking resistance. Proc Crop Sci Soc Jpn 52:355–361

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Bingying FM, Maghirang R, Li Z, Xing Y, Zhang Q et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Oscar R-L, Brown PJ, Acharya CB, Mitchell SE et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. PNAS 110:453–458

    Article  PubMed  Google Scholar 

  • Mulder EG (1954) Effect of mineral nutrition on lodging of cereals. Plant Soil 5:246–306

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14. https://doi.org/10.1111/nyas.12540

    Article  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Noor RBM, Caviness CE (1980) Influence of induced lodging on pod distribution and seed yield in soybeans. Agron J 72:904–906. https://doi.org/10.2134/agronj1980.00021962007200060010x

    Article  Google Scholar 

  • Ookawa T, Ishihara K (1992) Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci 61:419–425

    Article  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  CAS  PubMed  Google Scholar 

  • Oraguzie NC, Wilcox PL (2007) An overview of association mapping. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, USA, pp 1–9

    Chapter  Google Scholar 

  • Ostrander EA, Kruglyak L (2000) Unleashing the canine genome. Genome Res 10:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin, SB, Schilperoort, RA (eds) Plant molecular biology manual. Springer, Dordrecht, pp 183–190

    Chapter  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakata I, Sakai M, Imbe T (2003) The correlation of the resistance to root lodging with growth angle, diameter and pulling strength of crown roots in rice (Oryza sativa) seedlings. Jpn J Crop Sci (Jpn) 72:56–61

    Article  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701

    Article  CAS  PubMed  Google Scholar 

  • Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Quant Trait Loci 2:830

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. PNAS 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima K, Akita S, Sakai N (1992) Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation I. Comparison of the root lodging tolerance among cultivars by the measurement of pushing resistance. Jpn J Crop Sci 61:380–387

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Weber CR, Fehr WR (1966) Seed yield losses from lodging and combine harvesting in soybeans. Agron J 58:287–289. https://doi.org/10.2134/agronj1966.00021962005800030012x

    Article  Google Scholar 

  • Wooten D, Livingston D, Lyerly H, Holland J, Jellen E, Marshall D, Murphy JP (2009) Quantitative trait loci and epistasis for oat winter-hardiness component traits. Crop Sci 49:1989–1998

    Article  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K (2014) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 9:e113287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zhu G, Li G, Wang D, Yuan S, Wang F (2016) Changes in the lodging-related traits along with rice genetic improvement in China. PLoS One 11:e0160104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber U, Winzeler H, Messmer M, Keller M, Keller B, Schmid J, Stamp P (1999) Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci 182:17–24

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jianhua Ji, a technician at Nanjing Agricultural University Farm, for help with the daily management of the paddy field.

Funding

Funding support was a grant provided by National Natural Science Foundation of China (31671658), a Grant from doctoral found of Educational Ministry (B0201300662), and a Grant from the China national “863” program (2010AA101301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Hong.

Ethics declarations

Consent for publication

Not applicable.

Availability of data and materials

The raw genotypic data are available in Supplementary Table 5.

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowadan, O., Li, D., Zhang, Y. et al. Mining of favorable alleles for lodging resistance traits in rice (oryza sativa) through association mapping. Planta 248, 155–169 (2018). https://doi.org/10.1007/s00425-018-2885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2885-y

Keywords

Navigation