Skip to main content
Log in

Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves.

Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark–light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

HPLC:

High-performance liquid chromatography

STS:

Stilbene synthase

CLO3:

Caleosin 3

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baek SH, Shin WC, Ryu HS, Lee DW, Moon E, Seo CS, Hwang E, Lee HS, Ahn MH, Jeon Y (2012) Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS ONE 8(3):e57930

    Article  CAS  Google Scholar 

  • Bassard JE, Werck-Reichhart D (2012) Protein–protein and protein–membrane associations in the lignin pathway. Plant Cell 24(11):4465–4482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  PubMed  CAS  Google Scholar 

  • Bellow S, Latouche G, Brown SC, Poutaraud A, Cerovic ZG (2012) In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves. J Exp Bot 63(10):3697–3707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27(9):2545–2559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243(4):1–13

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • David S, Brenda WS (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27(27):37–48

    Google Scholar 

  • Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 13(4):351–371

    Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847

    Article  PubMed  CAS  Google Scholar 

  • Donnez D, Kim KH, Antoine S, Conreux A, Luca VD, Jeandet P, Clément C, Courot E (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor. Process Biochem 46(5):1056–1062

    Article  CAS  Google Scholar 

  • Dubrovina A, Kiselev K (2017) Regulation of stilbene biosynthesis in plants. Planta 246:597–623

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell Online 24(9):3489–3505

    Article  CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775–784

    Article  PubMed  CAS  Google Scholar 

  • Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233(1–2):83–93

    Article  PubMed  CAS  Google Scholar 

  • Fritz K, Klaus H (1975) Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase of cell-suspension cultures of Petroselinum hortense. Eur J Biochem 56(1):205–213

    Article  Google Scholar 

  • Giovinazzo G, Degara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67(6):960–970

    Article  PubMed  CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(100):965–973

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif H, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361(6408):153–156

    Article  PubMed  CAS  Google Scholar 

  • Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157(2):876–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Kctrenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragariaxananassa). J Exp Bot 60(7):2093–2106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herman EM (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11(6):672–679

    Article  PubMed  CAS  Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135–4149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hrazdina G, Zobel AM, Hoch HC (1987) Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc Natl Acad Sci USA 84(24):8966–8970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, Zhang S, Singer SD, Yin X, Yang J, Wang Y, Wang X (2016) Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea. Front Plant Sci 7:1379

    PubMed  PubMed Central  Google Scholar 

  • Jeandet P, Courot E, Clément C, Ricord S, Crouzet J, Aziz A, Cordelier S (2017) Molecular engineering of phytoalexins in plants: benefits and limitations for food and agriculture. J Agric Food Chem 65(13):2643–2644

    Article  PubMed  CAS  Google Scholar 

  • Jian Z (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20(9):576–585

    Article  CAS  Google Scholar 

  • Jiao Y, Xu W, Dong D, Wang Y, Nick P (2016) A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J Exp Bot 67(19):5841–5856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8(3):280–291

    Article  PubMed  CAS  Google Scholar 

  • Jung E, Jensen RA (1986) Chloroplasts of higher plants synthesize l-phenylalanine via l-arogenate. Proc Natl Acad Sci USA 83(19):7231–7235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambiranda D, Katam R, Basha SM, Siebert S (2014) iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 13(2):555–569

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19(9):904–910

    Article  CAS  Google Scholar 

  • Krokene P (2015) Conifer defense and resistance to bark beetles. Bark beetles: biology and ecology of native and invasive species. Elsevier, Oxford, pp 177–207

    Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86

    Article  CAS  Google Scholar 

  • Leckband GH (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genetics 96(8):1004–1012

    Article  CAS  Google Scholar 

  • Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH (2009) Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21(11):3535–3553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li SH, Nagy NE, Hammerbacher A, Krokene P, Niu XM, Gershenzon J, Schneider B (2012) Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies). ChemBioChem 13(18):2707–2713

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2013) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25(9):3311–3328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Im Kim J, Pysh L, Chapple C (2015) Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol 169(4):2409–2421

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378

    Article  PubMed  CAS  Google Scholar 

  • Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12(3):527–535

    Article  PubMed  CAS  Google Scholar 

  • Pan QH, Wang L, Li JM (2009) Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Sci 176(3):360–366

    Article  CAS  Google Scholar 

  • Parage C, Tavares R, Réty S, Baltenweckguyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG (2007) Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J Agric & Food Chem 55(13):4913

    Article  CAS  Google Scholar 

  • Richter A, Jacobsen HJ, Kathen AD, Lorenzo GD, Briviba K, Hain R, Ramsay G, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25(11):1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149(3):1251–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126(1):317–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy S (2000) Strategies for the minimisation of UV-induced damage. In: de Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 177–205

    Chapter  Google Scholar 

  • Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54(13):4633–4640

    Article  PubMed  CAS  Google Scholar 

  • Schöppner A, Kindl H (1984) Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. J Biol Chem 259(11):6806–6811

    PubMed  Google Scholar 

  • Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162(9):985–1002

    Article  PubMed  CAS  Google Scholar 

  • Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26(7):916–935

    Article  PubMed  CAS  Google Scholar 

  • Shimada TL, Hara-Nishimura I (2015) Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr Opin Plant Biol 25:145–150

    Article  PubMed  CAS  Google Scholar 

  • Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K (2014) Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol 164(1):105–118

    Article  PubMed  CAS  Google Scholar 

  • Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2016) Role of natural stilbenes in the prevention of cancer. Oxid Med Cell Longev 2016:3128951

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S (2015) Multi omics in grape berry skin revealed specific induction of stilbene synthetic pathway by UV-C irradiation. Plant Physiol 168(1):47–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, S-i Higashi, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35(4):545–555

    Article  PubMed  CAS  Google Scholar 

  • Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T (2015) Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc Natl Acad Sci 112(13):4158–4163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38(6):610–618

    Article  PubMed  CAS  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12(1):1–22

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34(3):159–164

    Google Scholar 

  • Wang W, Tang K, Yang HR, Wen PF, Zhang P, Wang HL, Huang WD (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem 48(2):142–152

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127(3):876–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welte M (2015) Expanding roles for lipid droplets. Curr Biol 25(11):R470–R481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55(4):85–107

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231(2):475–487

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62(8):2745

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86(4):527–541

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C (2016) Insights into the mechanisms underlying ultraviolet-C induced resveratrol metabolism in grapevine (V. amurensis Rupr.) cv. “Tonghua-3”. Front. Plant Sci 7:503

    Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Yu CKY, Lam CNW, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47(7):1017

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15(2):72–80

    Article  PubMed  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2005) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220(2):241–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from the National Science Foundation of China (Grant No. 31672129). The authors specifically thank Dr Alexander (Sandy) Lang from RESCRIPT Co. (New Zealand) for useful comments and language editing which have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1427 kb)

Supplemental Movie S1

The STS-containing oil bodies moved randomly in the cytoplasm. Supplementary material 2 (AVI 20627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Wang, L. & Wang, Y. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. Planta 248, 89–103 (2018). https://doi.org/10.1007/s00425-018-2883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2883-0

Keywords

Navigation