Skip to main content
Log in

Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew.

Abstract

S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosaB. lactucae and L. sativa cv. UCDM2–G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GSNO:

S-Nitrosoglutathione

GSNOR:

S-Nitrosoglutathione reductase

hpi:

Hours post inoculation

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

References

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2016) Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Front Plant Sci 7:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Rodriguez-Serrano M, Esteban FJ, Fernandez-Ocana A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, Del Río LA (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Barroso J, Valderrama R, Corpas F (2013) Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol Plant 35:2635–2640

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Fernández-Ocaňa AM, Valderrama R, Carreras A, Esteban FJ, Luque F, MaV Gómez-Rodríguez, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant Cell Physiol 50:265–279

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaňa AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J Exp Bot 62:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    PubMed  PubMed Central  Google Scholar 

  • Díaz M, Achkor H, Titarenko E, Martínez MC (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 543:136–139

    Article  PubMed  Google Scholar 

  • Domingos P, Prado Ana M, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Espunya MC, De Michele R, Gómez-Cadenas A, Martínez MC (2012) S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Exp Bot 63:3219–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I (2014) S-Nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun 5:5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong B, Wen D, Wang X, Wei M, Yang F, Li Y, Shi Q (2015) S-Nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol 56:790–802

    Article  CAS  PubMed  Google Scholar 

  • Gow A, Doctor A, Mannick J, Gaston B (2007) S-nitrosothiol measurements in biological systems. J Chromatogr B 851:140–151

    Article  CAS  Google Scholar 

  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J Exp Bot 59:147–154

    Article  CAS  PubMed  Google Scholar 

  • Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J (2013) Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. Plant Sci 211:23–34

    Article  CAS  PubMed  Google Scholar 

  • Kubienová L, Kopečný D, Tylichová M, Briozzo P, Skopalová J, Šebela M, Navrátil M, Tache R, Luhová L, Barroso JB, Petřivalský M (2013) Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie 95:889–902

    Article  PubMed  Google Scholar 

  • Kubienová L, Tichá T, Jahnová J, Luhová L, Mieslerová B, Petrřivalský M (2014) Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta 239:139–146

    Article  PubMed  Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebeda A, Mieslerová B (2011) Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathol 60:400–415

    Article  Google Scholar 

  • Lebeda A, Sedlářová M, Petřivalský M, Prokopová J (2008) Diversity of defence mechanisms in plant–oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. Eur J Plant Pathol 122:71–89

    Article  Google Scholar 

  • Lebeda A, Mieslerová B, Petrželová I, Korbelová P, Česneková E (2012) Patterns of virulence variation in the interaction between Lactuca spp. and lettuce powdery mildew (Golovinomyces cichoracearum). Fungal Ecol 5:670–682

    Article  Google Scholar 

  • Lebeda A, Mieslerová B, Petrželová I, Korbelová P (2013) Host specificity and virulence variation in populations of lettuce powdery mildew pathogen (Golovinomyces cichoracearum s. str.) from prickly lettuce (Lactuca serriola). Mycol Prog 12:533–545

    Article  Google Scholar 

  • Lebeda A, Křístková E, Kitner M, Mieslerová B, Jemelková M, Pink DAC (2014a) Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur J Plant Pathol 138:597–640

    Article  CAS  Google Scholar 

  • Lebeda A, Mieslerová B, Petřivalský M, Luhová L, Špundová M, Sedlářová M, Nožková-Hlaváčková V, Pink DAC (2014b) Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici. Eur J Plant Pathol 138:69–596

    Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6:789–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  PubMed  Google Scholar 

  • Malik SI, Hussain A, Yun B-W, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  PubMed  Google Scholar 

  • MieslerovÁ B, Lebeda A, Kennedy R (2004) Variation in Oidium neolycopersici development on host and non-host plant species and their tissue defence responses. Ann Appl Biol 144:237–248

    Article  Google Scholar 

  • Moore KP, Mani AR (2002) Measurement of protein nitration and S-nitrosothiol formation in biology and medicine. Methods Enzymol 359:256–268

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    Article  PubMed  Google Scholar 

  • Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco M-J, Crute I, Michelmore R (2016) Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210:309–326

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U (2015) Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures–Botrytis cinerea interaction. Protoplasma 252:307–319

    Article  CAS  PubMed  Google Scholar 

  • Piterková J, Petřivalský M, Luhová L, Mieslerová B, Sedlářová M, Lebeda A (2009) Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol Plant Pathol 10:501–513

    Article  PubMed  Google Scholar 

  • Piterková J, Hofman J, Mieslerová B, Sedlářová M, Luhová L, Lebeda A, Petřivalský M (2011) Dual role of nitric oxide in Solanum spp.–Oidium neolycopersici interactions. Environ Exp Bot 74:37–44

    Article  Google Scholar 

  • Piterková J, Luhová L, Mieslerová B, Lebeda A, Petřivalský M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65

    Article  PubMed  Google Scholar 

  • Rusterucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-Nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado I, Martínez C, Oliveira H, Frungillo L (2013) Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses. Braz J Bot 36:89–98

    Article  Google Scholar 

  • Schlicht M, Kombrink E (2013) The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi. Front Plant Sci 4:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedlářová M, Lebeda A, Pink DAC (2001) The early stages of interaction between effective and non-effective race-specific genes in Lactuca sativa, wild Lactuca spp. and Bremia lactucae (race NL16). J Plant Dis Protect 108:477–489

    Google Scholar 

  • Sedlářová M, Luhová L, Petřivalský M, Lebeda A (2007) Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiol Biochem 45:607–616

    Article  PubMed  Google Scholar 

  • Sedlářová M, Petřivalský M, Piterková J, Luhová L, Kočiřová J, Lebeda A (2011) Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. Eur J Plant Pathol 129:267–280

    Article  Google Scholar 

  • Sedlářová M, Kubienová L, Drábková Trojanová Z, Luhová L, Lebeda A, Petřivalský M (2016) The role of nitric oxide in development and pathogenesis of biotrophic phytopathogens—downy and powdery mildews. Adv Bot Res 77:263–283

    Article  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tichá T, Činčalová L, Kopečný D, Sedlářová M, Kopečná M, Luhová L, Petřivalský M (2017) Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide 68:68–76

    Article  PubMed  Google Scholar 

  • Tomanková K, Luhová L, Petřivalský M, Peč P, Lebeda A (2006) Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol Mol Plant Pathol 68:22–32

    Article  Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Guerra D, Lee U, Vierling E (2013) S-Nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH (2011) S-Nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Skelly MJ, Yin M, Yu M, Mun B-G, Lee SU, Hussain A, Spoel SH, Loake GJ (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol 211:516–526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Grant Agency (501/12/0590), by Palacký University in Olomouc (IGA_PrF_2017_016, IGA_PrF_2017_001, IGA_PrF_2018_001), and by Ministry of Education, Youths and Sports, Czech Republic (MSM 6198959215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Petřivalský.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tichá, T., Sedlářová, M., Činčalová, L. et al. Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Planta 247, 1203–1215 (2018). https://doi.org/10.1007/s00425-018-2858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2858-1

Keywords

Navigation