Skip to main content
Log in

FlowerMorphology: fully automatic flower morphometry software

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco.

Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter—radius of outer corolla—does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

O1:

Center of a circle around external vertices

O2:

Center of a circle around internal vertices

O3:

Center of a circle around a corolla tube

R :

Radius of a circle around external vertices

R2:

Radius of a circle around internal vertices

R3:

Radius of a circle around a corolla tube

S t :

Area of a corolla tube

GAI:

Geometrical asymmetry of (petal) incisions

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the revolution. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Andrade IM, Mayo SJ, Kirkup D, Van Den Berg C (2008) Comparative morphology of populations of Monstera Adans. (Araceae) from natural forest fragments in Northeast Brazil using elliptic Fourier analysis of leaf outlines. Kew Bull 63:193–211

    Article  Google Scholar 

  • Bissel EK, Diggle PK (2010) Modular genetic architecture of floral morphology in Nicotiana: quantitative genetic and comparative phenotypic approaches to floral integration. J Evol Biol 23:1744–1758

    Article  Google Scholar 

  • Cardozo AP, Temponi LG, Andrade IM, Mayo SJ, Smidt EC (2014) A morphometric and taxonomic study of Anthurium augustinum complex (Araceae), endemic to the Brazilian Atlantic Forest. Feddes Repert 125:43–58

    Article  Google Scholar 

  • Chen CY, Butts CL, Dang PM, Wang ML (2015) Advances in phenotyping of functional traits. In: Kumar J, Pratap A, Kumar S (eds) Phenomics in crop plants: trends, options and limitations. Springer India, New Delhi, pp 163–180

    Google Scholar 

  • Deyneko IV, Kel AE, Bloecker H, Kauer G (2005) Signal-theoretical DNA similarity measure revealing unexpected similarities of E. coli promoters. In Silico Biol 5:547–555

    CAS  PubMed  Google Scholar 

  • Deyneko IV, Bredohl B, Wesely D, Kalybaeva YM, Kel AE, Blocker H, Kauer G (2006) FeatureScan: revealing property-dependent similarity of nucleotide sequences. Nucleic Acids Res 34:W591–W595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner AG, Gerald JNF, Menz J, Shepherd KA, Howarth DG, Jabaily RS (2016) Characterizing floral symmetry in the Core Goodeniaceae with geometric morphometrics. PLoS ONE 11:e0154736. https://doi.org/10.1371/journal.pone.0154736

    Article  PubMed  PubMed Central  Google Scholar 

  • Genaev MA, Doroshkov AV, Pshenichnikova TA, Kolchanov NA, Afonnikov DA (2012) Extraction of quantitative characteristics describing wheat leaf pubescence with a novel image-processing technique. Planta 236:1943–1954. https://doi.org/10.1007/s00425-012-1751-6

    Article  CAS  PubMed  Google Scholar 

  • Helsen P, Van Dongen S (2016) Associations between floral asymmetry and individual genetic variability differ among three prickly pear (Opuntia echios) populations. Symmetry 8:116. https://doi.org/10.3390/sym8110116

    Article  Google Scholar 

  • Hsu HC, Chen CY, Lee TK, Weng LK, Yeh DM, Lin TT, Wang CN, Kuo YF (2015) Quantitative analysis of floral symmetry and tube dilation in an F2 cross of Sinningia speciosa. Sci Hortic 188:71–77

    Article  Google Scholar 

  • Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7:843–934

    Article  Google Scholar 

  • Kloster M, Kauer G, Beszteri B (2014) SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects. BMC Bioinform 15:218. https://doi.org/10.1186/1471-2105-15-218

    Article  Google Scholar 

  • Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Gr Image Proc 18:236–258

    Article  Google Scholar 

  • Linker R, Cohen O, Naor A (2012) Determination of the number of green apples in RGB images recorded in orchards. Comput Electron Agric 81:45–57

    Article  Google Scholar 

  • Maliga P, Sz.-Breznovits A, Márton L (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol 244(131):29–30

    Article  CAS  PubMed  Google Scholar 

  • Mann DG, McDonald SM, Bayer MM, Droop SJM, Chepurnov VA, Loke RE, Ciobanu A, du Buf JMH (2004) The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43(4):459–482

    Article  Google Scholar 

  • Marks CE, Newbigin E, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust Syst Bot 24:61–86

    Article  Google Scholar 

  • Mursalimov S, Deineko E (2017) Cytomixis in tobacco microsporogenesis: are there any genome parts predisposed to migration? Protoplasma 254:1379–1384. https://doi.org/10.1007/s00709-016-1028-1

    Article  CAS  PubMed  Google Scholar 

  • Mursalimov S, Sidorchuk Y, Demidov D, Meister A, Deineko E (2016) A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis. Protoplasma 253:1583–1588. https://doi.org/10.1007/s00709-015-0907-1

    Article  PubMed  Google Scholar 

  • Narkhede HP (2013) Review of image segmentation techniques. Int J Sci Mod Eng 1:54–61

    Google Scholar 

  • Parekh HS, Thakore DG, Jaliya UK (2014) A survey on object detection and tracking methods. Int J Innov Res Comput Commun Eng 2:2970–2979

    Google Scholar 

  • Radović S, Urošević A, Hočevar K, Vuleta A, Manitašević-Jovanović S, Tucić B (2017) Geometric morphometrics of functionally distinct floral organs in Iris pumila: analyzing patterns of symmetric and asymmetric shape variations. Arch Biol Sci 69:223–231

    Article  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91. https://doi.org/10.1111/j.1469-8137.2005.01491.x

    Article  CAS  PubMed  Google Scholar 

  • Restif C, Ibanez-Ventoso C, Vora MM, Guo S, Metaxas D, Driscoll M (2014) CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput Biol 10:e1003702. https://doi.org/10.1371/journal.pcbi.1003702PCOMPBIOL-D-13-02100

    Article  PubMed  PubMed Central  Google Scholar 

  • Russ JC (2016) The image processing handbook. CRC Press, Boca Raton

    Google Scholar 

  • Saxena L, Armstrong L (2014) A survey of image processing techniques for agriculture. Proc AFITA 2014:401–413

    Google Scholar 

  • Scassellati E, Lucchese F, Abbate G (2013) A morphometric study of Armeria canescens aggr. (Plumbaginaceae) in the Italian Peninsula. Plant Biosyst 147:743–750

    Article  Google Scholar 

  • Shukla SKCX, Cortese G, Nayak GN (2013) Climate mediated size variability of diatom Fragilariopsis kerguelensis in the Southern Ocean. Quat Sci Rev 69:49–58

    Article  Google Scholar 

  • Sidorchuk YV, Deineko EV (2014) Deformation of nuclei and abnormal spindles assembly in the second male meiosis of polyploid tobacco plants. Cell Biol Int 38:472–479. https://doi.org/10.1002/cbin.10222

    Article  PubMed  Google Scholar 

  • Sidorchuk YV, Deineko EV, Shumny VK (2007) Role of microtubular cytoskeleton and callose walls in the manifestation of cytomixis in pollen mother cells of tobacco Nicotiana tabacum L. Cell Tissue Biol 1(6):577–581

    Article  Google Scholar 

  • Silva MFS, De Andrade IM, Mayo SJ (2012) Geometric morphometrics of leaf blade shape in Montrichardia linifera (Araceae) populations from the Rio Parnaíba Delta, north-east Brazil. Bot J Linn Soc 170:554–572

    Article  Google Scholar 

  • Sinjushin AA, Bagheri A, Maassoumi AA, Rahiminejad MR (2015) Terata of two legume species with radialized corolla: some correlations in floral symmetry. Plant Syst Evol 301:2387–2397

    Article  Google Scholar 

  • Song Y, Glasbey CA, Horgan GW, Polder G, Dieleman JA, Van der Heijden GWAM (2014) Automatic fruit recognition and counting from multiple images. Biosyst Eng 118:203–215

    Article  Google Scholar 

  • Sozzani R, Busch W, Spalding EP, Benfey PN (2014) Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci 19:304–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitz M, Hartl M, Baldwin IT, Gaquerel E (2014) Jasmonoyl-l-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). Plant Cell 26:3964–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vamosi JC, Goring SJ, Kennedy BF, Mayberry RJ, Moray CM, Neame LA, Tunbridge ND, Elle E (2007) Pollination, floral display, and the ecological correlates of polyploidy. Functional ecosystems and communities. Glob Sci Books 1:1–9

    Google Scholar 

  • Wang CC, Hsu HC, Wang CN, Kuo YF (2015) Morphological integration between floral petals for Sinnigia Speciosa. In: 2015 ASABE annual international meeting. American Society of Agricultural and Biological Engineers, p 1

  • Wendel J, Doyle J (2005) Polyploidy and evolution in plants. Plant diversity and evolution. Genotypic and phenotypic variation in higher plants. CAB International, Wallingford

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the program of SB RAS № 0324-2018-0017. The authors are grateful to A. Zagorskaya, Y. Sidorchuk, and S. Mursalimov for providing the polyploid series of N. tabacum, to F. Pessler for editing the manuscript and to one of the reviewers for thorough proofreading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey M. Rozov or Igor V. Deyneko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Executables, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozov, S.M., Deineko, E.V. & Deyneko, I.V. FlowerMorphology: fully automatic flower morphometry software. Planta 247, 1163–1173 (2018). https://doi.org/10.1007/s00425-018-2856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2856-3

Keywords

Navigation