Skip to main content
Log in

Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

74 phytocyanin genes were identified in the Populus trichocarpa genome. Phylogenetic analysis grouped the PC proteins into four subfamilies (UCs, PLCs, SCs, and ENODLs). Closely related PC proteins share similar motifs, implying similar functions. Expression profiles of PtPC genes were analyzed in response to drought and salt-stress.

Phytocyanins (PCs) are blue copper proteins associated with electron carrier activity that have a large influence on plant growth and resistance. The majority of PCs are chimeric arabinogalactan proteins (AGPs). In this work, we identified 74 PC genes in Populus trichocarpa and analyzed them comprehensively. Based on the ligands composition of copper-binding sites, glycosylation state, the domain structure and spectral characteristics of PC genes, PCs were divided into four subfamilies [uclacyanins (UCs), plantacyanins (PLCs), stellacyanins (SCs) and early nodulin-like proteins (ENODLs)], and phylogenetic relationship analysis classified them into seven groups. All PtPCs are randomly distributed on 17 of the 19 poplar chromosomes, and they appear to have undergone expansion via segmental duplication. Eight PtPCs do not contain introns, and each group has a similar conserved motif structure. Promoter analysis revealed cis-elements related to growth, development and stress responses, and established orthology relationships of PCs between Arabidopsis and poplar by synteny analysis. Expression profile analysis and qRT-PCR analysis showed that PtPCs were expressed widely in various tissues. Quantitative real-time RT-PCR analysis of PC genes expression in response to salt and drought stress revealed their stress-responses profiles. This work provides a theoretical basis for a further study of stress resistance mechanisms and the function of PC genes in poplar growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AG:

Arabinogalactan

AGPs:

Arabinogalactan proteins

ENODLs:

Early nodulin-like proteins

PCs:

Phytocyanins

PCLD:

Plastocyanin-like domain

PLCs:

Plantacyanins

SCs:

Stellacyanins

SP:

Signal peptide

UCs:

Uclacyanins

K s :

Number of synonymous substitutions per synonymous site

K a :

Number of non-synonymous substitutions per non-synonymous site

References

  • Anderson SL, Teakle GR, Martino-Catt SJ, Kay SA (1994) Circadian clock- and phytochrome regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. Plant J 6(4):457–470

    Article  CAS  PubMed  Google Scholar 

  • Bobb AJ, Chern MS, Bustos MM (1997) Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucleic Acids Res 25(3):641–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Li X, Lv Y, Ding L (2015) Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays. Front Plant Sci 6:515. https://doi.org/10.3389/fpls.2015.00515

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Garcia F, Nathan HC, Kim D, Mcclure B (2005) Stylar glycoproteins bind to S-RNase in vitro. Plant J 42(3):295–304

    Article  CAS  PubMed  Google Scholar 

  • Denancé N, Szurek B, Noël LD (2014) Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant Cell Physiol 55(3):469–474

    Article  PubMed  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109(7):1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138(2):778–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133(4):1691–1701. https://doi.org/10.1104/pp.103.023580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317(5938):656–660

    Article  CAS  PubMed  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127(3):918–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56(420):2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Fedorova M, Mortel JVD, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130(2):519–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri AV, Anishetty S, Gautam P (2004) Functionally specified protein signatures distinctive for each of the different blue copper proteins. BMC Bioinform 5(1):1–8

    Article  Google Scholar 

  • Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Russell H, Rochak N, Hayes RD, Joni F, Therese M, William D, Uffe H, Nicholas P (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421(6918):63–66

    Article  CAS  PubMed  Google Scholar 

  • Hart PJ, Nersissian AM, Herrmann RG, Nalbandyan RM, Valentine JS, Eisenberg D (1996) A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution. Protein Sci 5(11):2175–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T, Dong J, Qu L (2016) Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26(17):2343–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Qian G, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10(1):145. https://doi.org/10.1186/1471-2229-10-145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui M, Lin F, Zhu C, Xue C, Hualin Z, Yan X (2014) Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci 229:96–110

    Article  Google Scholar 

  • Jeßberger N, Krey VM, Rademacher C, Böhm ME, Mohr AK, Ehlingschulz M, Scherer S, Märtlbauer E (2015) From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front Microbiol 6(6):560

    PubMed  PubMed Central  Google Scholar 

  • Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ (2017) A motif and amino acid bias bioinformatics pipeline to identify hydroxyproline-rich glycoproteins. Plant Physiol 174(2):886–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan JA, Wang Q, Sjölund RD, Schulz A, Thompson GA (2007) An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis. Plant Physiol 143(4):1576–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yu M, Geng LL, Zhao J (2010) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64(3):482–497

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gao G, Zhang T, Wu X (2013) The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis. Mol Genet Genom 288(1–2):1–20

    Article  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Jie Z (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61(10):2647–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61(10):2647–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Zhao H, Liu Z, Zhao J (2011) The phytocyanin gene family in rice (Oryza sativa L.): genome-wide identification, classification and transcriptional analysis. PLoS One 6(10):e25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yan C, Li H, Wu W, Liu Y (2017) Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front Plant Sci 8:1–17

    CAS  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62(4):689–703

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Yamaguchi I, Suzuki Y (2004) Isolation and identification of glycosylphosphatidylinositol-anchored arabinogalactan proteins and novel β-glucosyl Yariv-reactive proteins from seeds of rice (Oryza sativa). Plant Cell Physiol 45(12):1817–1829

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Asami T, Suzuki Y (2009) Genome-wide identification, structure and expression studie, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem 73(11):2452–2459

    Article  CAS  PubMed  Google Scholar 

  • Nejad ES, Askari H, Soltani S (2012) Regulatory TGACG-motif may elicit the secondary metabolite production through inhibition of active cyclin-dependent kinase/cyclin complex. Plant Omics 5(6):553–558

    CAS  Google Scholar 

  • Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG, Valentine JS (1998) Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci 7(9):1915–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48(5–6):551–573

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, Von HG, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Poon S, Heath R, Clarke A (2013) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160(2):684–695

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129(4):1448–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58(1):137–161

    Article  CAS  PubMed  Google Scholar 

  • Sessa G, Morelli G, Ruberti I (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J 12(9):3507–3517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7(3):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153(2):485–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM, Keppler B, Liu X, Lichtenberg J, Welch LR (2016) Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa. BMC Plant Biol 16(1):229

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Qiu F, Lamport DTA, Kieliszewski MJ (2004) Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J Biol Chem 279(13):1315656–1315665

    Article  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15(9):2192–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Feng L, Zhu Y, Li Y, Yan H, Xiang Y (2015) Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice. Biol Direct 10:48. https://doi.org/10.1186/s13062-015-0076-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Shen Y, Hu Y, Tan S, Lin Z (2011) A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. J Plant Physiol 168(9):935–943

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Li Y, Chen D, Liu H, Zhu D, Xiang Y (2016) Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis). Sci Rep UK 6:24520

    Article  CAS  Google Scholar 

  • Xu L, Wang XJ, Wang T, Li LB (2017) Genome-wide identification, classification, and expression analysis of the phytocyanin gene family in Phalaenopsis equestris. Biol Plant 61(3):1–8

    Article  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71(3):291–305

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki M, Furumoto T, Hata S, Shinozaki M, Izui K (2000) Characterization of a novel gene encoding a phytocyanin-related protein in morning glory (Pharbitis nil). Biochem Biophys Res Commun 268(2):466–470

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  • Zhang R, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley PE, Waugh R, Fincher GB (2016) The dynamics of transcript abundance during cellularisation of developing barley endosperm. Plant Physiol 170(3):1549–1565

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Laboratory of Modern Biotechnology for their assistance in this study.

Funding

National Natural Science Foundation of China (31370561) and National Science and Technology Support Plan Corpus (2015BAD07B070104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanwei Yan or Yan Xiang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Protein backbones of PCs in P. trichocarpa. The coloured sequences at the N and C terminus indicate predicted signal peptides (green) and GPI anchor addition sequences (purple) if present in the sequences. Putative AG sites (blue) are also indicated. Red font indicates N-glycosylation site. Extensins SP3, SP4 and SP5 repeats are indicated (light blue) if present. Note that the putative AG glycomodules are only checked in the proteins containing N-secretion signals (TIFF 32125 kb)

Fig. S2

Exon–intron structures and conserved domains of the predicted PtPC proteins. Exons, introns and untranslated regions (UTRs) are represented by yellow rectangles, grey lines and blue rectangles, respectively (TIFF 437 kb)

Fig. S3

Sliding window plots of Ka/Ks ratios of representative duplicated PtPC gene paralogs. The x-axis denotes the nucleotide position, and the y-axis denotes the Ka/Ks ratio (TIFF 68 kb)

Fig. S4

Extensive microsynteny of PC regions between Arabidopsis and poplar. Arabidopsis and Populus chromosomes are shown in different colours. Numbers along each chromosome box indicate sequence length in megabases. Whole chromosomes of the two species harbouring PC regions are encircled. Black lines represent syntenic relationships between PC regions (TIFF 3195 kb)

Fig. S5

Synteny analysis of PC genes in Populus. Black lines represent syntenic relationships (TIFF 2627 kb)

Fig. S6

Hierarchical clustering of poplar PC gene expression. The heatmap shows hierarchical clustering of PtPC genes across various tissues/organs. Affymetrix microarray data under accession number GSE13990 encompassing results from six organ/tissue types including young leaves (YL), roots (R), xylem (XY), female catkin (FC), male catkin (MC) and mature leaves (ML) were re-analysed (TIFF 621 kb)

Supplementary material 7 (XLSX 11 kb)

Supplementary material 8 (XLSX 9 kb)

Supplementary material 9 (XLSX 9 kb)

Supplementary material 10 (XLSX 26 kb)

Supplementary material 11 (XLSX 11 kb)

Supplementary material 12 (XLSX 12 kb)

Supplementary material 13 (XLSX 9 kb)

Supplementary material 14 (XLSX 9 kb)

Supplementary material 15 (XLSX 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Hu, W., Wang, Y. et al. Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa. Planta 247, 1133–1148 (2018). https://doi.org/10.1007/s00425-018-2849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2849-2

Keywords

Navigation