Skip to main content
Log in

Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This study highlights dehydration-mediated temporal changes in physicochemical, transcriptome and metabolome profiles indicating altered gene expression and metabolic shifts, underlying endurance and adaptation to stress tolerance in the marginalized crop, grasspea.

Grasspea, often regarded as an orphan legume, is recognized to be fairly tolerant to water-deficit stress. In the present study, 3-week-old grasspea seedlings were subjected to dehydration by withholding water over a period of 144 h. While there were no detectable phenotypic changes in the seedlings till 48 h, the symptoms appeared during 72 h and aggravated upon prolonged dehydration. The physiological responses to water-deficit stress during 72–96 h displayed a decrease in pigments, disruption in membrane integrity and osmotic imbalance. We evaluated the temporal effects of dehydration at the transcriptome and metabolome levels. In total, 5201 genes of various functional classes including transcription factors, cytoplasmic enzymes and structural cell wall proteins, among others, were found to be dehydration-responsive. Further, metabolome profiling revealed 59 dehydration-responsive metabolites including sugar alcohols and amino acids. Despite the lack of genome information of grasspea, the time course of physicochemical and molecular responses suggest a synchronized dehydration response. The cross-species comparison of the transcriptomes and metabolomes with other legumes provides evidence for marked molecular diversity. We propose a hypothetical model that highlights novel biomarkers and explain their relevance in dehydration-response, which would facilitate targeted breeding and aid in commencing crop improvement efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

bHLH:

Basic helix-loop-helix

CML15:

Calmodulin-like 15

DW:

Dry weight

ERF:

Ethylene responsive factor

FW:

Fresh weight

HSD:

Hydroxysteroid dehydrogenase

HSP:

Heat shock protein

JA:

Jasmonic acid

MDA:

Malondialdehyde

PAP:

Purple acid phosphatase

PP2C:

Protein phosphatase 2C

ROS:

Reactive oxygen species

RWC:

Relative water content

SSR:

Simple sequence repeats

TFs:

Transcription factors

β-ODAP:

β-N-oxalyl-α,β-diaminopropionic acid

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida NF, Leitao ST, Caminero C, Torres AM, Rubiales D, Patto MCV (2014) Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol Biol Rep 41:269–283

    Article  CAS  PubMed  Google Scholar 

  • Almeida NF, Krezdorn N, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2015) Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front Plant Sci 6:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68:594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barpete S (2015) Genetic associations, variability and diversity in biochemical and morphological seed characters in Indian grass pea (Lathyrus sativus L.) accessions. Fresen Environ Bull 24:492–497

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baud S, Wuillème S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    Article  CAS  PubMed  Google Scholar 

  • Benjamins R, Ampudia CSG, Hooykaas PJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Angiosperm DNA C-values database (release 6.0, Dec 2012 edn). Philosophical Transactions of the Royal Society, London

    Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horsegram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Fernandez AC, Ishitani M, Moreta D, Seki M, Ayling S, Shinozaki K (2011) Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biol 11:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Calderon FJ, Vigil MF, Nielsen DC, Benjamin JG, Poss DJ (2012) Water use and yields of no-till managed dryland grasspea and yellow pea under different planting configurations. Field Crops Res 125:179–185

    Article  Google Scholar 

  • Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT (2016) Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front Plant Sci 7:1044

    PubMed  PubMed Central  Google Scholar 

  • Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    Article  CAS  PubMed  Google Scholar 

  • Coll-Garcia D, Mazuch J, Altmann T, Müssig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563:82–86

    Article  CAS  PubMed  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low-temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22:185–219

    Article  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21

    Article  CAS  PubMed Central  Google Scholar 

  • Delannoy E, Le Ret M, Faivre-Nitschke E, Estavillo GM, Bergdoll M, Taylor NL, Pogson BJ, Small I, Imbault P, Gualberto JM (2009) Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg (ACG) and is essential for efficient chloroplast translation. Plant Cell 21:2058–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, Yin W (2014) A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun 450:453–458

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. In: Torri K, Chang C, Comai L (eds) The Arabidopsis book 11. The American Society of Plant Biologists, Rockville, p e0166

    Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung AM, Pang EC, Taylor PW (2002) Examination of Pisum and Lathyrus species as sources of Ascochyta blight resistance for field pea (Pisum sativum). Australas Plant Path 31:41–45

    Article  Google Scholar 

  • Hillocks RJ, Maruthi MN (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654

    Article  Google Scholar 

  • Huang L, Zhang F, Wang W, Zhou Y, Fu B, Li Z (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics 15:1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Anantharaman V, Aravind L (2007) The DOMON domains are involved in heme and sugar recognition. Bioinformatics 23:2660–2664

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PE, Haldrup A, Zhang S, Scheller HV (2004) The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem 279:24212–24217

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn RA, Durst F (2000) Function and evolution of plant cytochrome p450. Recent Adv Phytochem 34:151–189

    Article  CAS  Google Scholar 

  • Kang M, Fokar M, Abdelmageed H, Allen RD (2011) Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75:451–466

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011) Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol 49:589–600

    Article  CAS  PubMed  Google Scholar 

  • Lahuta LB, Pluskota WE, Stelmaszewska J, Szablińska J (2014) Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). J Plant Physiol 171:1306–1314

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7:e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang P, Kang J, Gan Y, Yu J, Calderón-Urrea A, Lyu J, Zhang G, Feng Z, Xie J (2016) Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Front Plant Sci 7:1281

    PubMed  PubMed Central  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savoure A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920

    Article  CAS  PubMed  Google Scholar 

  • Mathur PN, Ramanatha Rao V, Arora RK (1997) Lathyrus genetic resources network. In: Proceeding of a IPGRI-ICARDA-ICAR regional working group meeting NBPGR, IPGRI Office for South Asia, New Delhi, 8–10 Dec 1997

  • Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O’Connell MA (2007) Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173:510–520

    Article  CAS  Google Scholar 

  • Munnik T, Meijer HJ, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer VS, Kaul AK, Spencer PS (1989) International Network for the Improvement of Lathyrus sativus and the eradication of lathyrism (INILSEL): a TWMRF initiative. In: Spencer PS (ed) The grasspea: threat and promise. Third World Medical Research Foundation, New York, pp 219–223

    Google Scholar 

  • Pilon-Smits EA, Ebskamp MJ, Paul MJ, Jeuken MJ, Weisbeek PJ, Smeekens SC (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince SJ, Joshi T, Mutava RN, Syed N, Joao Vitor Mdos S, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Valliyodan B, Xu D, Nguyen HT (2015) Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci 240:65–78

    Article  CAS  PubMed  Google Scholar 

  • Rabara RC, Tripathi P, Rushton PJ (2017) Comparative metabolome profile between tobacco and soybean grown under water-stressed conditions. Biomed Res Int 3065251:1–12

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 6:1116

    PubMed  PubMed Central  Google Scholar 

  • Rathi D, Chakraborty S, Chakraborty N (2015) Proteomics of an orphan legume, grasspea: current status and future strategy. Plant Tissue Cult Biotechnol 25:117–141

    Article  Google Scholar 

  • Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N (2016) Legume proteomics: progress, prospects, and challenges. Proteomics 16:310–327

    Article  CAS  PubMed  Google Scholar 

  • Reddy PCO, Sairanganayakulu G, Thippeswamy M, Reddy PS, Reddy MK, Sudhakar C (2008) Identification of stress-induced genes from the drought tolerant semi-arid legume crop horsegram (Macrotyloma uniflorum (Lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Sci 175:372–384

    Article  CAS  Google Scholar 

  • Rey P, Gillet B, Römer S, Eymery F, Massimino J, Peltier G, Kuntz M (2000) Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J 21:483–494

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142

    Article  CAS  PubMed  Google Scholar 

  • Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, Valpuesta V, Botella MA (2006) The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. Plant Physiol 142:1113–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder F, Lisso J, Mussig C (2011) EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. Plant Physiol 156:1620–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasithamparam K (2003) Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul 39:77–81

    Article  CAS  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestre S, Araujo SS, Vaz Patto MC, Marques da Silva J (2014) Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. J Integr Plant Biol 56:610–621

    Article  PubMed  Google Scholar 

  • Talukdar D (2011) Morpho-physiological responses of grass pea (Lathyrus sativus L.) genotypes to salt stress at germination and seedling stages. Legume Res 34:232–241

    Google Scholar 

  • Talukdar D (2012) Total flavonoids, phenolics, tannins and antioxidant activity in seeds of lentil and grass pea. Int J Phytomed 4:537

    CAS  Google Scholar 

  • Teets NM, Kawarasaki Y, Lee RE Jr, Denlinger DL (2013) Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J Comp Physiol 183:189–201

    Article  CAS  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H, Toyooka K, Sato M, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90:61–78

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239:255–266

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Brewin NJ (2000) Immunolocalization of a cysteine protease in vacuoles, vesicles and symbiosomes of pea nodule cells. Plant Physiol 123:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov AE (2003) DNA helix: the importance of being GC-rich. Nucleic Acids Res 31:1838–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Kong L, Zhao S, Zhang H, Tang L, Li Z, Gu X, Luo J, Gao G (2011) Rice-Map: a new-generation rice genome browser. BMC Genomics 12:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Fukaki H, Fujisawa H, Tasaka M (1997) Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism. Plant Cell Physiol 38:530–535

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Jiang J, Burlyaeva M, Hu J, Coyne CJ, Kumar S, Redden R, Sun X, Wang F, Chang J, Hao X, Guan J, Zong X (2014) Large-scale microsatellite development in grasspea (Lathyrus sativus L.), an orphan legume of the arid areas. BMC Plant Biol 14:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH313 activation. Plant Physiol 151:1889–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen G, Zhao P, Zhou Q, Zhao X (2017) The abundance of certain metabolites responds to drought stress in the highly drought tolerant plant Caragana korshinskii. Acta Physiol Plant 39:116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Tatyana Goldberg, Technical University of Munich, Germany, for helping with the localization prediction.

Funding

This work was supported by Grants (38/1385/14/EMR-II) from the Council of Scientific and Industrial Research (CSIR), Govt. of India. We also thank the CSIR for providing predoctoral fellowship to DR and SG as well as University Grants Commission (UGC) for providing predoctoral fellowship to AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathi, D., Gayali, S., Pareek, A. et al. Transcriptome profiling illustrates expression signatures of dehydration tolerance in developing grasspea seedlings. Planta 250, 839–855 (2019). https://doi.org/10.1007/s00425-018-03082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-03082-2

Keywords

Navigation