Skip to main content

Advertisement

Log in

MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The similarity of IREH1 (Incomplete Root Hair Elongation 1) and animal MAST kinases was confirmed; IREH1cDNA was cloned while expressing in cultured animal cells co-localized with the centrosome.

In mammals and fruit flies, microtubule-associated serine/threonine-protein kinases (MAST) are strongly involved in the regulation of the microtubule system. Higher plants also possess protein kinases homologous to MASTs, but their function and interaction with the cytoskeleton remain unclear. Here, we confirmed the sequence and structural similarity of MAST-related putative protein kinase IREH1 (At3g17850) and known animal MAST kinases. We report the first cloning of full-length cDNA of the IREH1 from Arabidopsis thaliana. Recombinant GFP-IREH1 protein was expressed in different cultured animal cells. It revealed co-localization with the centrosome without influencing cell morphology and microtubule arrangement. Structural N-terminal region of the IREH1 molecule co-localized with centrosome as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IREH1:

Incomplete root hair elongation 1

MAST:

Microtubule-associated serine/threonine-protein kinases

References

  • Alvarez-Fernandez M, Sanchez-Martinez R, Sanz-Castillo B et al (2013) Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proc Natl Acad Sci USA 110:17374–17379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 369:20130464. doi:10.1098/rstb.2013.0464

    Article  PubMed  PubMed Central  Google Scholar 

  • Atteson K (1997) The performance of neighbor-joining algorithms of phylogeny reconstruction. In: Jiang T, Lee D (eds) Lecture notes in computer science. Springer, Berlin, pp 101–110

    Google Scholar 

  • Bauer M, Cubizolles F, Schmidt A, Nigg EA (2016) Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 35:2152–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Komis G, Müller J, Menzel D, Samaj J (2010) Arabidopsis homologs of nucleus—and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22:755–771. doi:10.1105/tpc.109.071746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi:10.1093/nar/gku340 (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binarová P, Cenklová V, Procházková J, Doskocilová A, Volc J, Vrlík M, Bögre L (2006) Gamma-tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryantseva SA, Gavryushina ES, Yemets AI, Karpov PA, YaB Blume, Drygin YuF, Nadezhdina ES (2010) MAST2-like protein kinase from grape Vitis vinifera: cloning of catalytic domain cDNA. Cytol Genet 44:227–232. doi:10.3103/S0095452710040079

    Article  Google Scholar 

  • Burakov A, Kovalenko O, Semenova I, Zhapparova O, Nadezhdina E, Rodionov V (2008) Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells. Traffic 9:472–480. doi:10.1111/j1600-0854200700698x

    Article  CAS  PubMed  Google Scholar 

  • Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA 107:12564–12569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystal Sect D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073

    Article  CAS  Google Scholar 

  • Chudinova EM, Nadezhdina ES, Ivanov PA (2012) Cellular acidosis inhibits assembly, disassembly, and motility of stress granules. Biochemistry (Mosc) 77:1277–1284. doi:10.1134/S0006297912110065

    Article  CAS  Google Scholar 

  • Clay MR, Varma S, West RB (2013) MAST2 and NOTCH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum Pathol 44:2837–2844. doi:10.1016/jhumpath201308001

    Article  CAS  PubMed  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 35(suppl 2):W197–W201. doi:10.1093/nar/gkn238

    Article  Google Scholar 

  • Gardiner J, Overall R, Marc J (2012) Plant microtubule cytoskeleton complexity: microtubule arrays as fractals. J Exp Bot 63:635–642. doi:10.1093/jxb/err312

    Article  CAS  PubMed  Google Scholar 

  • Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J (2014) Root hairs. Arabidopsis Book (eCollection 2014) 12:e0172. doi:10.1199/tab0172

    Article  Google Scholar 

  • Gu J, Bourne PE (2009) Structural bioinformatics, 2nd edn. Wiley-Blackwell, Hoboken. ISBN 978-0-470-18105-8

    Google Scholar 

  • Hain D, Langlands A, Sonnenberg HC, Bailey C, Bullock SL, Müller HA (2014) The Drosophila MAST kinase drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 141:2119–2130. doi:10.1242/dev104711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Wen Y, Guo X, Li Z, Dai J, Ni B, Yu J, Lin Y, Zhou W, Yao B, Jiang Y, Sha J, Conrad DF, Hu Z (2015) A screen for genomic disorders of infertility identifies MAST2 duplications associated with nonobstructive azoospermia in humans. Biol Reprod 93:61. doi:10.1095/biolreprod.115.131185

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpov PA, Yemets AI, Matusov VG, Nyporko AYu, Nadezhdina ES, ShashinaNYu, BlumeYaB (2009) Bioinformatic search of plant homologs of microtubule associated protein kinase MAST2. In: Ezhov VN, Mitrofanova IV (eds) Collected scientific works of Nikit. Botan. Gard. Actual problems of applied genetics breeding and biotechnology of plants, vol 131, pp 181–187

  • Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AYu, Shashina NYu, YaB Blume (2010) Bioinformatic search of plant microtubule—and cell cycle related serine-threonine protein kinases. BMC Genom 11(Suppl 1):S14. doi:10.1186/1471-2164-11-S1-S14

    Article  Google Scholar 

  • Karpov PA, Brytsun VM, Rayevsky AV, Demchuk OM, Pydiura NO, Ozheredov SP, Samofalova DA, Spivak SI, Yemets AI, Kalchenko VI, Blume YaB (2015) High-throughput screening of new antimitotic compounds based on CSLabGrid virtual organization. SciInnov 11:85–93. doi:10.15407/scin1101092

    Google Scholar 

  • Krtková J, Benáková M, Schwarzerová K (2016) Multifunctional microtubule-associated proteins in plants. Front Plant Sci 7:474. doi:10.3389/fpls.2016.00474

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuntal BK, Aparoy P, Reddanna P (2010) EasyModeller: a graphical interface to modeller. BMC Res Notes 3:226. doi:10.1186/1756-0500-3-226

    Article  PubMed  PubMed Central  Google Scholar 

  • Labbé C, Goyette P, Lefebvre C, Stevens C, Green T, Tello-Ruiz MK, Cao Z, Landry AL, Stempak J, Annese V, Latiano A, Brant SR, Duerr RH, Taylor KD, Cho JH, Steinhart AH, Daly MJ, Silverberg MS, Xavier RJ, Rioux JD (2008) Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Genes Immun 9:602–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 20. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystal 26:283–291

    Article  CAS  Google Scholar 

  • Lee MM, Chan MK, Bundschuh R (2009) SIB-BLAST: a web server for improved delineation of true and false positives in PSI-BLAST searches. Nucleic Acids Res 37:W53–W56. doi:10.1093/nar/gkp301 (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates new developments and status in 2015. Nucleic Acids Res 43(D1):D257–D260. doi:10.1093/nar/gku949

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Banavali N, Foloppe N (2001) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265. doi:10.1002/1097-0282(2000)56:4<257:AID-BIP10029>30CO;2-W

    Article  Google Scholar 

  • Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Samaj J (2010) Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 61:234–248

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Oyama T, Shimura Y, Okada K (2002) The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant J 30:289–299. doi:10.1046/j1365-313X200201290x

    Article  CAS  PubMed  Google Scholar 

  • Pislariu CI, Dickstein R (2007) An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula. Plant Physiol 144:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, Lonigro RJ, Quist M, Siddiqui J, Mehra R, Jing X, Giordano TJ, Sabel MS, Kleer CG, Palanisamy N, Natrajan R, Lambros MB, Reis-Filho JS, Kumar-Sinha C, Chinnaiyan AM (2011) Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 17(12):1646–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šamaj J, Baluska F, Hirt H (2004) From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J Exp Bot 55:189–198

    PubMed  Google Scholar 

  • Šamajová O, Komis G, Šamaj J (2013) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci 18:140–148

    Article  PubMed  Google Scholar 

  • Sedbrook JC, Kaloriti D (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13:303–310

    Article  CAS  PubMed  Google Scholar 

  • Stacklies W, Seifert C, Graeter F (2011) Implementation of force distribution analysis for molecular dynamics simulations. BMC Bioinform 12:101. doi:10.1186/1471-2105-12-101

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony. Methods Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  Google Scholar 

  • Valiente M, Andrés-Pons A, Gomar B, Torres J, Gil A, Tapparel C, Antonarakis SE, Pulido R (2005) Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 280:28936–28943

    Article  CAS  PubMed  Google Scholar 

  • Walden PD, Cowan NJ (1993) A novel 205-kilodalton testis-specific serine/threonine protein kinase associated with microtubules of the spermatid manchette. Mol Cell Biol 13:7625–7635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden PD, Millette CF (1996) Increased activity associated with the MAST205 protein kinase complex during mammalian spermiogenesis. Biol Reprod 55:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fredericksen ZS, Vierkant RA, Kosel ML, Pankratz VS, Cerhan JR, Justenhoven C, Brauch H, Olson JE, Couch FJ, GENICA Consortium (2010) Association of genetic variation in mitotic kinases with breast cancer risk. Breast Cancer Res Treat 119:453–462. doi:10.1007/s10549-009-0404-3

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. doi:10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena M. Chudinova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was financially supported by Russian Foundation for Basic Research Grants 12-04-90919(to DL and EN) and 13-04-90482 (to YB and EN).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Full cladogram of the catalytic domains of all A. thaliana protein kinases and related kinases (PDF 1482 kb)

425_2017_2742_MOESM2_ESM.docx

Fig. S2 Full sequence of IREH1 (AT3G17850.1). IREH1-tr is underlined, catalytic domain is indicated in bold (DOCX 13 kb)

425_2017_2742_MOESM3_ESM.tif

Fig. S3 Immunoprecipitation of either GFP-IREH1 or GFP from transfected HEK293 cells with anti-GFP antibody. Lanes 1–4, immunoblotting with antibody to dynein intermediate chain; lanes 5–8, immunoblotting with antibody to γ-tubulin. Whole cell lysates, lanes 3, 4, 7, 8; immunoprecipitated proteins, lanes 1, 2, 5, 6. Transfection with GFP-IREH1, lanes 1, 3, 5, 7; transfection with GFP, lanes 2, 4, 6, 8 (TIFF 1927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudinova, E.M., Karpov, P.A., Fokin, A.I. et al. MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells. Planta 246, 959–969 (2017). https://doi.org/10.1007/s00425-017-2742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2742-4

Keywords

Navigation