Skip to main content
Log in

Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration.

Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato cultivars. Mainly hydroxylation and methylation patterns of the B-ring of dihydroflavonols, leading to the formation of specific anthocyanidin backbones, can be assigned to a distinct coloring of the potato cultivars and tuber tissues. However, basically the same glycosylation and acylation reactions occur regardless of the main anthocyanidin precursor present in the respective red and blue/purple tissue. Thus, the different anthocyanin profiles in red and blue potato cultivars likely relate to superior regulation of the expression and activities of hydroxylases and methyltransferases rather than to differences for downstream glycosyl- and acyltransferases. In this regard, the characterized potato cultivars represent a valuable resource for the molecular analysis of the genetic background and the regulation of anthocyanin side chain modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ESI:

Electrospray ionization

MRM:

Multiple reaction monitoring

PCA:

Principal component analysis

PDA:

Photodiode array

TQMS:

Triple quadrupole mass spectrometry

UHR-TOF-MS:

Ultra-high resolution time-of-flight mass spectrometry

UPLC:

Ultra-performance liquid chromatography

References

  • Algarra M, Fernandes A, Mateus N, de Freitas V, da Silva JCE, Casado J (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J Food Compos Anal 33(1):71–76

    Article  CAS  Google Scholar 

  • Ampomah YA, Friend J (1988) Insoluble phenolic compounds and resistance of potato tuber disc to Phytophthora and Phoma. Phytochemistry 27(8):2533–2541

    Article  CAS  Google Scholar 

  • Andersen ØM, Opheim S, Aksnes DW, Frøystein NÅ (1991) Structure of petanin, an acylated anthocyanin isolated from Solanum tuberosum, using homo-and hetero-nuclear two-dimensional nuclear magnetic resonance techniques. Phytochem Anal 2(5):230–236

    Article  CAS  Google Scholar 

  • Andre CM, Oufir M, Guignard C, Hoffmann L, Hausman J-F, Evers D, Larondelle Y (2007) Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J Agr Food Chem 55(26):10839–10849

    Article  CAS  Google Scholar 

  • Bagchi D, Sen C, Bagchi M, Atalay M (2004) Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow) 69(1):75–80

    Article  CAS  Google Scholar 

  • Bridle P, Timberlake C (1997) Anthocyanins as natural food colours—selected aspects. Food Chem 58(1):103–109

    Article  CAS  Google Scholar 

  • Brown C (2006) Anthocyanin and carotenoid contents in potato: breeding for the specialty market. Proc Ida Winter Commod Sch 39:157–163

    Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26(11):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Castaneda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113(4):859–871

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chen S-M, Coe E Jr (1977) Control of anthocyanin synthesis by the C locus in maize. Biochem Genet 15(3–4):333–346

    Article  CAS  PubMed  Google Scholar 

  • De Jong W, De Jong D, De Jong H, Kalazich J, Bodis M (2003) An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theor Appl Genet 107(8):1375–1383

    Article  PubMed  Google Scholar 

  • Eichhorn S, Winterhalter P (2005) Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Res Int 38(8):943–948

    Article  CAS  Google Scholar 

  • Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 11(1):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agr Food Chem 45(5):1523–1540

    Article  Google Scholar 

  • Gopu V, Kothandapani S, Shetty PH (2015) Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog 79:61–69

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Kondo T, Tamura H, Imagawa H, Iino A, Takeda K (1982) Structure of gentiodelphin, an acylated anthocyanin isolated from Gentiana makinoi, that is stable in dilute aqueous solution. Tetrahedron Lett 23(36):3695–3698

    Article  CAS  Google Scholar 

  • Harrison HF, Peterson JK, Snook ME, Bohac JR, Jackson DM (2003) Quantity and potential biological activity of caffeic acid in sweet potato [Ipomoea batatas (L.) Lam.] storage root periderm. J Agr Food Chem 51(10):2943–2948

    Article  CAS  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand S, Naumann H, Kitzinski N, Köhler N, Winterhalter P (2009) Isolation and characterization of anthocyanins from blue-fleshed potatoes (Solanum tuberosum L.). Food 3(1):96–101

    Google Scholar 

  • Innocenzi V, Arnone S, Lai A, Musmeci S, Gambino P (2004) Eliciting of resistance against potato tuber moth larvae in tubers of Solanum tuberosum (+) S. pinnatisectum hybrids. In: Meeting of the physiology section of the european association for potato research, vol 684, pp 135–142

  • Janson CH (1983) Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science (Washington) 219(4581):187–189

    Article  CAS  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2003) Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 17(21):2407–2412

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. doi:10.1093/nar/gkv1070

    PubMed  PubMed Central  Google Scholar 

  • Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130(4):966–972

    Article  CAS  Google Scholar 

  • Kiple KF, Ornelas KC (2000) The Cambridge world history of food, vol 1. Cambridge University Press, Cambridge, pp 2000–2153

    Google Scholar 

  • Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240(5):931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachman J, Hamouz K (2005) Red and purple coloured potatoes as a significant antioxidant source in human nutrition-a review. Plant Soil Environ 51(11):477

    CAS  Google Scholar 

  • Lewis CE, Walker JR, Lancaster JE, Sutton KH (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. J Sci Food Agr 77(1):45–57

    Article  CAS  Google Scholar 

  • Liakopoulos G, Nikolopoulos D, Klouvatou A, Vekkos K-A, Manetas Y, Karabourniotis G (2006) The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann Bot-London 98(1):257–265

    Article  CAS  Google Scholar 

  • Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. Biomed Res Int 2004(5):306–313

    Google Scholar 

  • Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini reviews in Med Chem 9(1):31–59

    Article  CAS  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143(3):1252–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateus N, de Pascual-Teresa S, Rivas-Gonzalo JC, Santos-Buelga C, de Freitas V (2002) Structural diversity of anthocyanin-derived pigments in port wines. Food Chem 76(3):335–342

    Article  CAS  Google Scholar 

  • Mazza G (2007) Anthocyanins and heart health. Ann Ist Super Sanità 43(4):369

    CAS  PubMed  Google Scholar 

  • Mazzaracchio P, Pifferi P, Kindt M, Munyaneza A, Barbiroli G (2004) Interactions between anthocyanins and organic food molecules in model systems. Int J Food Sci Technol 39(1):53–59

    Article  CAS  Google Scholar 

  • Naito K, Umemura Y, Mori M, Sumida T, Okada T, Takamatsu N, Okawa Y, Hayashi K, Saito N, Honda T (1998) Acylated pelargonidin glycosides from a red potato. Phytochemistry 47(1):109–112

    Article  CAS  Google Scholar 

  • Nara K, Miyoshi T, Honma T, Koga H (2006) Antioxidative activity of bound-form phenolics in potato peel. Biosci Biotech Bioch 70(6):1489–1491

    Article  CAS  Google Scholar 

  • Navarre DA, Pillai SS, Shakya R, Holden MJ (2011) HPLC profiling of phenolics in diverse potato genotypes. Food Chem 127(1):34–41

    Article  CAS  Google Scholar 

  • Ohgami K, Ilieva I, Shiratori K, Koyama Y, Jin X-H, Yoshida K, Kase S, Kitaichi N, Suzuki Y, Tanaka T (2005) Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 46(1):275–281

    Article  PubMed  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231(5):1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA (2015) Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotech J 13(4):551–564

    Article  CAS  Google Scholar 

  • Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78(3):570S–578S

    CAS  PubMed  Google Scholar 

  • Rodriguez-Saona LE, Giusti MM, Wrolstad RE (1998) Anthocyanin pigment composition of red-fleshed potatoes. J Food Sci 63(3):458–465

    Article  CAS  Google Scholar 

  • Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6(1):1

    Article  Google Scholar 

  • Sachse J (1973) Anthocyane in den Kartoffelsorten Urgenta und Desirée (Solanum tuberosum L.). FOOD SCIENCE AND TECHNOLOGY-LEBENSMITTEL-WISSENSCHAFT & TECHNOLOGIE 153(5):294–300

  • Smoliński A, Walczak B, Einax J (2002) Hierarchical clustering extended with visual complements of environmental data set. Chemometr Intell Lab 64(1):45–54

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. P Natl Acad Sci USA 102(41):14694–14699

    Article  CAS  Google Scholar 

  • Steyn W, Wand S, Holcroft D, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155(3):349–361

    Article  CAS  Google Scholar 

  • Stushnoff C, Ducreux LJ, Hancock RD, Hedley PE, Holm DG, McDougall GJ, McNicol JW, Morris J, Morris WL, Sungurtas JA (2010) Flavonoid profiling and transcriptome analysis reveals new gene–metabolite correlations in tubers of Solanum tuberosum L. J Exp Bot 61(4):1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Kumegawa C, Harborne JB, Self R (1988) Pelargonidin 3-(6″-succinyl glucoside)-5-glucoside from pink Centaurea cyanus flowers. Phytochemistry 27(4):1228–1229

    Article  CAS  Google Scholar 

  • Team RC (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. http.www.R-project.org

  • Tsuda T (2016) Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants 5(2):13

    Article  PubMed Central  Google Scholar 

  • Valiñas MA, Lanteri ML, ten Have A, Andreu AB (2015) Chlorogenic acid biosynthesis appears linked with suberin production in potato tuber (Solanum tuberosum). J Agr Food Chem 63(19):4902–4913

    Article  Google Scholar 

  • Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, Viola R, Mattivi F (2012) A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J Agr Food Chem 60(36):8831–8840

    Article  CAS  Google Scholar 

  • Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agr Food Chem 45(2):304–309

    Article  CAS  Google Scholar 

  • Wang Q, Cao Y, Zhou L, Jiang C-Z, Feng Y, Wei S (2015) Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chem 169:246–254

    Article  CAS  PubMed  Google Scholar 

  • Warnes G, Bolker B, Bonebakker L, Gentleman R, Liaw W, Lumley T (2015) Pachage “gplots”: various R programming tools for plotting data. R package version 3.0. 1. https://cran r-project org/web/packages/gplots/gplots pdf

  • Wegener CB, Jansen G (2007) Soft-rot resistance of coloured potato cultivars (Solanum tuberosum L.): the role of anthocyanins. Potato Res 50(1):31–44

    Article  Google Scholar 

  • Willson MF, Whelan CJ (1990) The evolution of fruit color in fleshy-fruited plants. Am Nat 136(6):790–809

    Article  Google Scholar 

  • Xie S, Song C, Wang X, Liu M, Zhang Z, Xi Z (2015) Tissue-specific expression analysis of anthocyanin biosynthetic genes in white-and red-fleshed grape cultivars. Molecules 20(12):22767–22780

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng S, De Jong D, Griffiths H, Halitschke R, De Jong W (2009) The potato R locus codes for dihydroflavonol 4-reductase. Theor Appl Genet 119(5):931–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubko MK, Schmeer K, Gläßgen WE, Bayer E, Seitz HU (1993) Selection of anthocyanin-accumulating potato (Solanum tuberosum L.) cell lines from calli derived from seedlings produced by gamma-irradiated seeds. Plant Cell Rep 12(10):555–558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the ERA-IB ANTHOPLUS project (031A336A0) and by the COST Action “The quest for tolerant varieties—Phenotyping at plant and cellular level” (FA1306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Mock.

Electronic supplementary material

Supplemental Data Files: Raw data of this study are available for download under http://dx.doi.org/10.5447/IPK/2017/2 and comprise: (i) the Bruker Daltonics LC-UV/MS raw data files, (ii) the Waters LC–MS/MRM raw data files, (iii) the integrated peak areas for 23 tentatively annotated anthocyanin peaks (according to Supplemental Fig. 1 g) in tuber flesh and peel, respectively, of 57 potato genotypes, and (iv) the integrated peak areas for 21 tentatively annotated anthocyanins and 31 polyphenols (according to Table 3), respectively, in tuber flesh and/or peel of 19 potato genotypes. Below is the link to the electronic supplementary material.

425_2017_2718_MOESM1_ESM.pptx

Supplemental Fig. 1 a-g 24 anthocyanin profile groups, six profiles found in tuber flesh (Group 1-6 F, a and b) and 18 profiles found in tuber peel (Group 1-18 P, b to f). Bar charts (left) show the peak area of up to 23 tentatively annotated anthocyanins (g), averaged within each group. Red and blue columns represent the dominating colors of the appropriate tissues. Anthocyanins mainly contributing to the group variance are blue-rimmed. Tables (right) comprise all varieties/tissues assorted to the appropriate group. *Cultivars with highest abundance in main anthocyanins of respective tissues, and therefore selected as group representative samples for MRM analysis. a-gReferences used for compound annotation included: (Goto et al. (1982); Takeda et al. (1988); Naito et al. (1998); Hillebrand et al. (2009); Zhang et al. (2009); Kim et al. (2012)); http://www.genome.jp/dbget-bin/www_bget?pathway+sot00942 (PPTX 738 kb)

425_2017_2718_MOESM2_ESM.pptx

Supplemental Fig. 2 19 colored potato genotypes with different anthocyanin profiles in tuber flesh/peel selected via LC-UV/MS profile analysis (PPTX 2315 kb)

425_2017_2718_MOESM3_ESM.pptx

Supplemental Fig. 3 a-d Pearson correlation analysis results representing correlation coefficient |r|-values and significance P values in categories *** P < 0.001, ** P < 0.01, * P < 0.05, . P < 0.1, as well as scatter plots (regression line (red), data point tissue wise separated (yellow = flesh, orange = peel)) for the correlation between all anthocyanins (A1 to A21) and additional polyphenolic compounds (P1 to P31) (a, b), within the group of anthocyanins (c), and within the other polyphenols (d) detected in potato tuber tissues via LC–MS/MRM. Abbreviations of compounds are displayed according to Table 2 and 3, respectively (PPTX 1055 kb)

Supplemental Table 1 Colored potato genotypes analyzed by LC-UV/MS for initial anthocyanin profiling (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oertel, A., Matros, A., Hartmann, A. et al. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 246, 281–297 (2017). https://doi.org/10.1007/s00425-017-2718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2718-4

Keywords

Navigation