Skip to main content
Log in

Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The study is the first to reveal the proteomic response in plants to a single PAH stress, and indicates that NDPK3 is a positive regulator in the Arabidopsis response to phenanthrene stress.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic pollutants that are byproducts of carbon-based fuel combustion, and tend to persist in the environment for long periods of time. PAHs elicit complex, damaging responses in plants, and prior research at the physiological, biochemical, and transcriptional levels has indicated that reactive oxygen species (ROS) and oxidative stress play major roles in the PAH response. However, the proteomic response has remained largely unexplored. This study hypothesized that the proteomic response in Arabidopsis thaliana to phenanthrene, a model PAH, would include a strong oxidative stress signature, and would provide leads to potential signaling molecules involved. To explore that proteomic signature, we performed 2D-PAGE experiments and identified 30 proteins levels that were significantly altered including catalases (CAT), ascorbate peroxidase (APX), peroxiredoxins (POD), glutathione-S-transferase, and glutathione reductase. Also upregulated was nucleoside diphosphate kinase 3 (NDPK-3), a protein known to have metabolic and stress signaling functions. To address whether NDPK-3 functions upstream of the oxidative stress response, we measured levels of stress-responsive enzymes in NDPK-3 overexpressor, loss-of-function knockout, and wild-type plant lines. In the NDPK-3 overexpressor, the enzyme activities of APX, CAT, POD, as well as superoxide dismutase were all increased compared to wild type; in the NDPK-3 knockout line, these enzymes had reduced activity. This pattern occurred in untreated as well as phenanthrene-treated plants. These data support a model in which NDPK-3 is a positive regulator of the Arabidopsis stress response to PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalases

MDA:

Malondialdehyde

NDPK-3:

Nucleoside diphosphate kinase 3

PAH:

Polycyclic aromatic hydrocarbons

PCD:

Programmed cell death

POD:

Peroxiredoxins

ROS:

Reactive oxygen species

References

  • Alkio M, Tabuchi TM, Wang X, Colón-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  CAS  PubMed  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon–DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114

    Article  CAS  PubMed  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Burritt DJ (2008) The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ 31:1416–1431

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Xie JY, Liang SP (2000) Identification of protein spots in silver-stained two-dimensional gels by MALDI-TOF mass peptide map analysis. Acta Biochem Biophys Sin 32:387–391

    CAS  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Core Team R (2012) R: a language and environment for statistical computing. R Foundation Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu F (1996) Phytoremediation of soils contaminated with organic pollutants. In: Sparks DL (ed) Advances in agronomy. vol 56 Academic Press, pp 55–114

  • Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S (2011) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192:270–276

    CAS  PubMed  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Aa Zaiee, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis tool kit for the agricultural community. Nucl Acids Res 38:W64–W70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Gharahdaghi F, Mische SM (1998) Routine identification of proteins from sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in situ technique for cleaning oil-contaminated sites. Tech. rep., Department of Soil Science, University of Saskatchewan

  • Fukamatsu Y, Yabe N, Hasunuma K (2003) Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol 44:982–989

    Article  CAS  PubMed  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  CAS  PubMed  Google Scholar 

  • Guo J (2006) Laboratory manual of plant physiology. Higher Education Press, Beijing, pp 210–228

    Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hammargren J, Salinas T, Maréchal-Drouard L, Knorpp C (2007a) The pea mitochondrial nucleoside diphosphate kinase cleaves DNA and RNA. FEBS Lett 581:3507–3511

    Article  CAS  PubMed  Google Scholar 

  • Hammargren J, Sundström J, Johansson M, Bergman P, Knorpp C (2007b) On the phylogeny, expression and targeting of plant nucleoside diphosphate kinases. Physiol Plant 129:79–89

    Article  CAS  Google Scholar 

  • Hammargren J, Rosenquist S, Jansson C, Knorpp C (2008) A novel connection between nucleotide and carbohydrate metabolism in mitochondria: sugar regulation of the Arabidopsis nucleoside diphosphate kinase 3a gene. Plant Cell Rep 27:529–534

    Article  CAS  PubMed  Google Scholar 

  • Haque ME, Yoshida Y, Hasunuma K (2010) ROS resistance in Pisum sativum cv. Alaska: the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants. Planta 232:367–382

    Article  CAS  PubMed  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PML, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47

    Article  CAS  Google Scholar 

  • Hasunuma K, Yoshida Y, Haque ME, Ny Wang, Fukamatsu Y, Miyoshi O, Lee B (2011) Global warming, plant paraquat resistance, and light signal transduction through nucleoside diphosphate kinase as a paradigm for increasing food supply. Naunyn-Schmiedebergs Arch Pharmacol 384:391–395

    Article  CAS  PubMed  Google Scholar 

  • Herberich E, Sikorski J, Hothorn T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5(3):e9788. doi:10.1371/journal.pone.0009788

    Article  PubMed Central  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Immel F, Renaut J, Masfaraud JF (2012) Physiological response and differential leaf proteome pattern in the European invasive Asteraceae Solidago canadensis colonizing a former cokery soil. J Proteomics 75:1129–1143

    Article  CAS  PubMed  Google Scholar 

  • Kav NNV, Srivastava S, Goonewardene L, Blade SF (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230

    Article  CAS  Google Scholar 

  • Kim YH, Lim S, Yang KS, Kim CY, Kwon SY, Lee HS, Wang X, Zhou Z, Ma D, Yun DJ, Kwak SS (2009) Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweet potato plants. Mol Breed 24:233–244

    Article  CAS  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotech J 9:334–347

    Article  CAS  Google Scholar 

  • Knorpp C, Johansson M, Baird AM (2003) Plant mitochondrial nucleoside diphosphate kinase is attached to the membrane through interaction with the adenine nucleotide translocator. FEBS Lett 555:363–366

    Article  CAS  PubMed  Google Scholar 

  • Kolb M, Harms H (2000) Metabolism of fluoranthene in different plant cell cultures and intact plants. Environ Toxicol Chem 19:1304–1310

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao M, Li Y, Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809–2819

    Article  CAS  PubMed  Google Scholar 

  • Lima A, Farrington J, Reddy C (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6:109–131

    Article  CAS  Google Scholar 

  • Liu H, Weisman D, Ye Y, Cui B, Huang Y, Colón-Carmona A, Wang Z (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9:829–842

    CAS  PubMed  Google Scholar 

  • McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radical Biol Med 23:489–496

    Article  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nie L, Wu G, Culley DE, Scholten JCM, Zhang W (2007) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27:63–75

    Article  CAS  PubMed  Google Scholar 

  • Paskova V, Hilscherova K, Feldmannova M, Blaha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245

    Article  CAS  Google Scholar 

  • Peng RH, Xu RR, Fu XY, Xiong AS, Zhao W, Tian YS, Zhu B, Jin XF, Chen C, Han HJ, Yao QH (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. J Hazard Mater 189:19–26

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-b- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Samsøe-Petersen L, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063

    Article  PubMed  Google Scholar 

  • Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ, Millar AH (2001) Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett 508:272–276

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Kim MD, Yang KS, Kwon SY, Kim SH, Kim JS, Yun DJ, Kwak SS, Lee HS (2008) Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Trans Res 17:705–715

    Article  CAS  Google Scholar 

  • Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun R (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24

    Article  CAS  PubMed  Google Scholar 

  • Valcu CM, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    Article  CAS  PubMed  Google Scholar 

  • vd Trenck T, Sandermann H (1980) Oxygenation of benzo[a]pyrene by plant microsomal fractions. FEBS Lett 119:227–231

    Article  CAS  PubMed  Google Scholar 

  • vd Trenck T, Sandermann H (1981) Incorporation of benzo[alpha]pyrene quinones into lignin. FEBS Lett 125:72–76

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Zhao H (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res Special 50:1056–1061

    Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Weisman D, Alkio M, Colón-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol 10:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702

    Article  CAS  PubMed  Google Scholar 

  • Yang KA, Moon H, Kim G, Lim CJ, Hong JC, Lim CO, Yun DJ (2003) NDP kinase 2 regulates expression of antioxidant genes in Arabidopsis. P Japan Acad B-Phys 79B:86–91

    Article  Google Scholar 

  • Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT (2008) Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant 1:167–177

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Ogura Y, Hasunuma K (2006) Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in neurospora crassa. FEBS Lett 580:3282–3286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chentao Lin at University Of California, Riverside for generous donation of the vector pFGC5941 used in this study, and Dr. Yuejun Yang at Hunan University for assistance in proteomics and MALDI-TOF/TOF. We also thank Dr. Airong Wang and Guodong Lu at Agriculture and Forestry University, Fuzhou, and Jessica Redfern, Kristophe Diaz, Tsering Gesar, James Stark at University of Massachusetts Boston for helpful discussions and review. This work was supported by National Nature Science Foundation of China (Grant No. 30970532), Key Program for the Construction of the Economic Zone on the Western Side of the Taiwan Straits, Fujian Province (Grant No. 0b08b005) and Nature Science Foundation of Fujian (Grant No. 2014J01089) to HL.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Liu or Adán Colón-Carmona.

Additional information

H. Liu and D. Weisman contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Weisman, D., Tang, L. et al. Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. Planta 241, 95–107 (2015). https://doi.org/10.1007/s00425-014-2161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2161-8

Keywords

Navigation