Skip to main content
Log in

Variability and expression profile of the DRF1 gene in four cultivars of durum wheat and one triticale under moderate water stress conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The dehydration responsive element binding (DREB) proteins are important transcription factors that contribute to stress endurance in plants triggering the expression of a set of abiotic stress-related genes. A DREB2-related gene, previously referred to as dehydration responsive factor 1 (DRF1) was originally isolated and characterized in durum wheat. The aim of this study was to monitor the expression profiles of three alternatively spliced TdDRF1 transcripts during dehydration experiments and to evaluate the effects of genetic diversity on the molecular response, using experimental conditions reflecting as closely as possible water stress perceived by cereals in open field. To investigate the effect of moderate water stress conditions, time-course dehydration experiments were carried out under controlled conditions in the greenhouse on four durum wheat and one triticale genotypes. Differences were observed in molecular patterns, thus, suggesting a genotype dependency of the DRF1 gene expression in response to the stress induced. The biodiversity of the transcripts of the DRF1 gene was explored in order to assess the level of polymorphism and its possible effects on structure and function of putative proteins. A total of nine haplotypes were identified in the sequences cloned, seven of which encompassing polymorphisms in exon 4, including the region codifying for the DNA binding Apetala2 (AP2) domain. The 3D structural models of the AP2 domain were generated by homology modelling using the variability observed. The polymorphisms analysed did not significantly affect the structural arrangement of the DNA binding domains, thus resulting compatible with the putative functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DREB:

Dehydration responsive element binding

DRF1 :

Dehydration responsive factor 1

AP2:

Apetala2

DRE:

Dehydration responsive element

NLS:

Nuclear localization signal

SWC:

Soil water content

RWC:

Leaf relative water content

FW:

Fresh weight

TW:

Turgid weight

DW:

Dry weight

RT-PCR:

Real time polymerase chain reaction

CDS:

Coding DNA sequence

MFC:

Mean fold change

Rmsd:

Root mean square deviation

References

  • Agarwal P, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Ali-Benali MAD, Alary R, Joudrier P, Gautier MF (2005) Comparative expression of five Lea genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochem Biophys Acta 1730:56–65

    Article  PubMed  CAS  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed  CAS  Google Scholar 

  • Barrs C, Wheatherley PE (1968) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotech 23:169–177

    Article  CAS  Google Scholar 

  • Bittelli M (2011) Measuring soil water content: a review. HortTech 21:293–300

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    Article  PubMed  CAS  Google Scholar 

  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Köhl KI (2009) Expression profile of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Gen Syst 81:77–91

    Article  CAS  Google Scholar 

  • Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  PubMed  CAS  Google Scholar 

  • González L, González-Vilar M (2001) Determination of relative water content. In: Reigosa Roger MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Acadamic Publishers, The Netherlands, pp 207–212

  • Grzesiak M, Rzepka A, Hura T, Hura K, Skoczowski A (2007) Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance. Photosynthetica 45:280–287

    Article  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130

    Article  PubMed  CAS  Google Scholar 

  • Jones HG, Higgs KH (1979) Water potential–water content relationships in apple leaves. J Exp Bot 30:965–970

    Article  Google Scholar 

  • Kam J, Gresshoff P, Shorter R, Xue GP (2007) Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Sci 173:650–659

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Knox AK, Li C, Vágújfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol Biol 67:257–270

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr Sect D 60:2256–2268

    Article  CAS  Google Scholar 

  • Laskowski R, MacArthur M, Moss D, Thornton J (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Latini A, Rasi C, Sperandei M, Cantale C, Iannetta M, Dettori M, Ammar K, Galeffi P (2007) Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Ann Appl Biol 150:187–195

    Article  CAS  Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49:950–958

    Article  PubMed  CAS  Google Scholar 

  • Magnani E, Sjölander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  PubMed  CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB CBF factors. Plant Biotech J 9:230–249

    Article  CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  PubMed  CAS  Google Scholar 

  • Ozkan HA, Levy A, Feldman M (2001) Allopoliploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. Plant J 50:54–69

    Article  PubMed  CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerardi C, Mita C, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell Environ 29:2143–2152

    Article  CAS  Google Scholar 

  • Roche J, Hewezi T, Bouniols A, Gentzbittel L (2009) Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. Plant Physiol Biochem 47:139–145

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Rodriguez E, Mar Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40

    Article  CAS  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    PubMed  CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 22:161–170

    Article  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782

    Article  PubMed  CAS  Google Scholar 

  • Singh KB (1998) Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol 118:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • Soergel DAW, Lareau LF, Brenner SE (2000) Regulation of gene expression by coupling of alternative splicing and NMD. In: Madame Curie bioscience database (Internet). Austin, Landes Bioscience. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6088/

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Zecca L, Wieczorek Kirk DA, Apel K, Eckstein L (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA+. Plant J 33:361–371

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Terashima A, Takumi S (2009) Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2. Genome 52:100–105

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:7

    Article  Google Scholar 

  • Xue G, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M, Shinozaki K, Yokoyama S (2008) Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiol Biochem 46:394–401

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signalling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Serena Guida and Dr. M. Dettori for useful criticism during preparation of the manuscript; Mr. F. Felici for the scrupulous greenhouse work; Dr. E. Tosi for his precious help during the real-time RT-PCR experiments; Mrs. Marian Shields for revision of English text. This work was partially supported by the High Relevance Mexico-Italy Project of the Italian Foreign Affairs Ministry; RIADE Project (Integrated Research for Applying new technologies and processes for combating Desertification, MIUR); FRUMISIS Project (MIPAF); COST FA0604 Tritigen Project. A fellowship of the Mexican Government, “Secretaría de Relaciones Exteriores”, was awarded to A. L. for two stages at CIMMYT (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Galeffi.

Additional information

A. Latini and M. Sperandei contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latini, A., Sperandei, M., Cantale, C. et al. Variability and expression profile of the DRF1 gene in four cultivars of durum wheat and one triticale under moderate water stress conditions. Planta 237, 967–978 (2013). https://doi.org/10.1007/s00425-012-1816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1816-6

Keywords

Navigation