Skip to main content

Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins

Abstract

Dehydrins are thought to play an essential role in the response, acclimation and tolerance to different abiotic stresses, such as cold and drought. These proteins have been classified into five groups according to the presence of conserved and repeated motifs in their amino acid sequence. Due to their putative functions in the response to stress, dehydrins have been often used as candidate genes in studies on population variability and local adaptation to environmental conditions. However, little is still known regarding the differential role played by such groups or the mechanism underlying their function. Based on the sequences corresponding to dehydrins available in public databases we have isolated eight different dehydrins from cDNA of Pinus pinaster. We have obtained also their genomic sequences and identified their intron/exon structure. Quantitative RT-PCR analysis of their expression pattern in needles, stems and roots during a severe and prolonged drought stress, similar to the ones trees must face in nature, is also reported. Additionally, we have identified two amino acid motifs highly conserved and repeated in Pinaceae dehydrins and absent in angiosperms, presumably related to the divergent expression profiles observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

EST:

Expressed sequence tag

LEA proteins:

Late embryogenesis abundant proteins

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

TC:

Tentative contig

References

  1. Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Moscow) 68:945–951

    Article  CAS  Google Scholar 

  2. Baker J, DennSteele C, Dure L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  3. Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  4. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  5. Campbell SA, Crone DE, Ceccardi TL, Close TJ (1998) A ca. 40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol Biol 38:417–423

    PubMed  Article  CAS  Google Scholar 

  6. Castillo J, Zúñiga A, Franco L, Rodrigo MI (2002) A chromatin-associated protein from pea seeds preferentially binds histones H3 and H4. Eur J Biochem 269:4641–4648

    PubMed  Article  CAS  Google Scholar 

  7. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  8. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  9. Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  10. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    PubMed  CAS  Google Scholar 

  11. Dubos C, Plomion C (2003) Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol 51:249–262

    PubMed  Article  CAS  Google Scholar 

  12. Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio J-M, Plomion C (2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol 23:169–179

    PubMed  Article  CAS  Google Scholar 

  13. Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    PubMed  Article  CAS  Google Scholar 

  14. Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    PubMed  Article  CAS  Google Scholar 

  15. Eriksson SK, Harryson P (2011) Dehydrins: molecular biology, structure and function. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, New York, pp 289–305

    Chapter  Google Scholar 

  16. Eveno E, Collada C, Guevara MA, Leger V, Soto A, Diaz L, Leger P, Gonzalez-Martinez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437

    PubMed  Article  CAS  Google Scholar 

  17. Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    PubMed  Article  CAS  Google Scholar 

  18. González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    PubMed  Article  Google Scholar 

  19. Grivet D, Sebastiani F, González-Martínez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028

    PubMed  Article  CAS  Google Scholar 

  20. Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116

    PubMed  Article  CAS  Google Scholar 

  21. Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    PubMed  Article  CAS  Google Scholar 

  22. Hundertmark M, Hincha D (2008) LEA (Late Embryogenesis Abundant) proteins and their encodinggenes in Arabidopsis thaliana. BMC Genomics 9:118

    PubMed  Article  Google Scholar 

  23. Hundertmark M, Buitink J, Leprice O, Hincha D (2011) The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Sci Res 21:165–173

    Article  CAS  Google Scholar 

  24. Jarvis SB, Taylor MA, McLeod MR, Davies HV (1996) Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziensii). J Plant Physiol 147:559–566

    Article  CAS  Google Scholar 

  25. Joosen RVL, Lammers M, Balk PA, Brønnum P, Konings MCJM, Perks M, Stattin E, van Wordragen MF, van der Geest AHM (2006) Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiol 26:1297–1313

    PubMed  Article  CAS  Google Scholar 

  26. Koag M-C, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    PubMed  Article  CAS  Google Scholar 

  27. Kosová K, Prásil IT, Vítámvás P (2010) Role of dehydrins in plant stress response. Handbook of plant and crop stress, 3rd edn, pp 239–285

    Google Scholar 

  28. Kovacs D, Kalmar E, Torok Z, Tompa P (2008a) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    PubMed  Article  CAS  Google Scholar 

  29. Kovacs D, Agoston B, Tompa P (2008b) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713

    PubMed  Article  Google Scholar 

  30. Lorenz WW, Alba R, Yu Y-S, Bordeaux J, Simoes M, Dean J (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264

    PubMed  Article  CAS  Google Scholar 

  31. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  Article  CAS  Google Scholar 

  32. Olvera-Carrillo Y, Luis Reyes J, Covarrubias AA (2011) Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6:586–589

    PubMed  Article  CAS  Google Scholar 

  33. Palmé AE, Pyhäjärvi T, Wachowiak W, Savolainen O (2009) Selection on nuclear genes in a Pinus phylogeny. Mol Biol Evol 26:893–905

    PubMed  Article  Google Scholar 

  34. Perdiguero P, Collada C, Barbero MC, García Casado G, Cervera MT, Soto Á (2012) Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiol Biochem 50:44–53

    PubMed  Article  CAS  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    PubMed  Article  CAS  Google Scholar 

  36. Rinne PLH, Kaikuranta PLM, van der Plas LHW, can der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    PubMed  Article  CAS  Google Scholar 

  37. Rorat T (2006) Plant dehydrins—Tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    PubMed  Article  CAS  Google Scholar 

  38. Sánchez-Gómez D, Velasco-Conde T, Cano-Martín FJ, Guevara MA, Teresa Cervera M, Aranda I (2010) Inter-clonal variation in functional traits in response to drought for a genetically homogeneous Mediterranean conifer. Environ Exp Bot 70:104–109

    Article  Google Scholar 

  39. Sun X, Lin HH (2010) Role of plant dehydrins in antioxidation mechanisms. Biologia 65:755–759

    Article  CAS  Google Scholar 

  40. Sunkar R, Oliver MJ, Cushman JC, Koster KL (2010) Dehydration tolerance in plants. Plant stress tolerance. Humana Press, pp 3–24

  41. Velasco-Conde T, Yakovlev I, Majada J, Aranda I, Johnsen Ø (2012) Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet Genom. doi:10.1007/s11295-012-0476-9

    Google Scholar 

  42. Wachowiak W, Balk P, Savolainen O (2009) Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genet Genom 5:117–132

    Article  Google Scholar 

  43. Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133:1702–1716

    PubMed  Article  CAS  Google Scholar 

  44. Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  45. Yakovlev I, Asante D, Fossdal C, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228:459–472

    PubMed  Article  CAS  Google Scholar 

  46. Yuxiu Z, Zi W, Jin X (2007) Molecular mechanism of dehydrin in response to environmental stress in plant. Progress Natural Science. Taylor and Francis, pp 237–246

Download references

Acknowledgments

The authors would like to thank Dr. Luis Gil from UPM for technical and scientific support. We also thank Dr. Jesús Rodríguez-Calcerrada and three anonymous reviewers for their helpful comments and suggestions. This work has been funded through the projects AGL2006-03242/FOR (Spanish Ministry of Education and Science), CCG07-UPM/AMB-1932 and CCG10-UPM/AMB-5038 (Madrid Regional Government–UPM). PP has a pre-doctoral fellowship from the Spanish Ministry of Education and Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Álvaro Soto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

425_2012_1737_MOESM2_ESM.pdf

Supplementary material Supplementary Figure S1 Alignment of amino acid sequences corresponding to gymnosperm and angiosperm dehydrins available in public databases. Amino acid sequences deduced from ESTs are labelled with an asterisk and in some cases are incomplete. Conserved motifs (A, E, Y, S, K) are highlighted, as well as differentially abundant residues (E, P v. G. T). See text for details (PDF 644 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perdiguero, P., Barbero, M.C., Cervera, M.T. et al. Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta 236, 1863–1874 (2012). https://doi.org/10.1007/s00425-012-1737-4

Download citation

Keywords

  • Dehydrin
  • Drought
  • Gene expression
  • Pinus
  • qRT-PCR
  • Sequence analysis