Skip to main content
Log in

Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Grapevine bud fruitfulness is determined by the differentiation of uncommitted meristem (UCM) into either tendril or inflorescence. Since tendril and inflorescence differentiation have long been considered sequential steps in inflorescence development, factors that control the progression of floral meristem development may regulate the final outcome of UCM differentiation, and thus affect fruitfulness. A comparison of the expression profiles of the master regulators of floral meristem identity (FMI) during development of fruitful and non-fruitful buds along the same cane allowed associating the expression of a homolog of terminal flower 1 (TFL1, a negative regulator of FMI) to fruitful buds, and the expression of positive FMI regulators to non-fruitful buds. Combined with (a) cytokinin-induced upregulation of VvTFL1A expression in cultured tendrils, which accompanied cytokinin-derived tendril transformation into branched, inflorescence-like structures, (b) positive regulation of VvTFL1A expression by cytokinin, which was demonstrated in transgenic embryonic culture expressing GUS reporter under the control of VvTFL1A promoter, and (c) a significantly higher level of active cytokinins in fruitful positions, the data may support the assumption of cytokinin-regulated VvTFL1A activity’s involvement in the control of inflorescence development. Such activity may delay acquisition of FMI and allow an extended branching period for the UCM, resulting in the differentiation of inflorescence primordia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP1:

Apetala1

CEN:

Centroradialis

FMI:

Flower meristem identity

FT:

Flowering locus 1

GA:

Gibberellic acid

GFP:

Green fluorescent protein

GUS:

Beta-glucoronidase

LFY:

Leafy

RRM:

Reiterated reproductive meristem

SAM:

Shoot apical meristem

TFL1:

Terminal flower 1

UCM:

Uncommitted meristem

Vv:

Vitis vinifera

References

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    Article  PubMed  Google Scholar 

  • Blázquez MA, Ferrandiz C, Madueño F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60:855–870

    Article  PubMed  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Buckeridge EJ, Pool A, Thomas MR (2003) New insights into grapevine flowering. Funct Plant Biol 30:593–606

    Article  CAS  Google Scholar 

  • Boss PK, Sreekantan L, Thomas MR (2006) A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct Plant Biol 33:31–41

    Article  CAS  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Buttrose MS (1974) Climatic factors and fruitfulness in grapevines. Hortic Abstr 44:319–326

    Google Scholar 

  • Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Calonje M, Martínez-Zapater JM (2007a) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Calonje M, Martínez-Zapater JM (2007b) Flowering transition in grapevine (Vitis vinifera L.). Can J Bot 85:701–711

    Article  CAS  Google Scholar 

  • Carmona MJ, Chaib J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59:2579–2596

    Article  PubMed  CAS  Google Scholar 

  • Conti L, Bradley D (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1967) Effects of growth retardants on Vitis vinifera L. Vitis 6:278–287

    Google Scholar 

  • Danilevskaya ON, Meng X, Ananiev EV (2010) Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol 153:238–251

    Article  PubMed  CAS  Google Scholar 

  • Dobrev PI, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A950:21–29

    Google Scholar 

  • Dry PR (2000) Canopy management for fruitfulness. Aust J Grape Wine Res 6:109–115

    Article  Google Scholar 

  • Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557

    Article  PubMed  CAS  Google Scholar 

  • Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11:687–694

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  PubMed  CAS  Google Scholar 

  • Guan CM, Zhu SS, Li XG, Zhang XS (2006) Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro. Plant Cell Rep 25:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Halaly T, Pang X, Batikoff T, Crane O, Keren A, Venkateswari J, Ogrodovitch A, Sadka A, Lavee S, Or E (2008) Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 228:79–88

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Joly D, Perrin M, Gertz C, Kronenberger J, Demangeat G, Masson JE (2004) Expression analysis of flowering genes from seedling-stage to vineyard life of grapevine cv. Riesling. Plant Sci 166:1427–1436

    Article  CAS  Google Scholar 

  • Lavee S, Regev U, Samish RM (1967) The determination of induction and differentiation in grape vines. Vitis 6:1–13

    Google Scholar 

  • May P (2004) Flowering and fruitset in grapevines. Lythrum Press, Adelaide

    Google Scholar 

  • Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688

    Article  PubMed  CAS  Google Scholar 

  • Morrison JC (1991) Bud development in Vitis vinifera L. Bot Gaz 152:304–315

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, UK

    Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Eshdat Y (2007) Grapes. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry—transgenic crops V, vol 60. Springer-Verlag, Berlin, pp 189–208

    Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grapes—a review. Am J Enol Vitic 22:92–109

    Google Scholar 

  • Pratt C (1974) Vegetative anatomy in cultivated grapes—a review. Am J Enol Vitic 25:131–150

    Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Bradley D, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62

    Article  PubMed  CAS  Google Scholar 

  • Sreekantan L, Thomas MR (2006) VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol 33:1129–1139

    Article  CAS  Google Scholar 

  • Srinivasan C, Mullins MG (1976) Reproductive anatomy of the grape-vine (Vitis vinifera L.): origin and development of anlage and its derivatives. Ann Bot 38:1079–1084

    Google Scholar 

  • Srinivasan C, Mullins MG (1978) Control of flowering in the grapevine (Vitis vinifera L.). Plant Physiol 61:127–130

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Mullins MG (1980a) Effects of temperature and growth regulators on formation of anlagen, tendrils and inflorescences in Vitis vinifera L. Ann Bot 45:439–446

    CAS  Google Scholar 

  • Srinivasan C, Mullins MG (1980b) Flowering in Vitis: effects of genotype on cytokinin-induced conversion of tendrils into inflorescences. Vitis 19:293–300

    Google Scholar 

  • Srinivasan C, Mullins MG (1981) Physiology of flowering in the grapevine—a review. Am J Enol Vitic 32:47–61

    CAS  Google Scholar 

  • Sugiura A, Utsunomiya N, Tomana T (1976) Induction of inflorescence by CCC application on primary shoots of grapevines. Vitis 15:88–95

    CAS  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etti Or.

File S1. Expression summary. Summary of published expression analyses of VFL, VAP1, VvTFL1A and VvFT in grapevine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, O., Halaly, T., Pang, X. et al. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta 235, 181–192 (2012). https://doi.org/10.1007/s00425-011-1497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1497-6

Keywords

Navigation