Skip to main content
Log in

Wax Crystal-Sparse Leaf1 encodes a β–ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cuticular waxes, forming the plant/atmosphere interface of plants colonizing the terrestrial environment, are complex mixtures of very-long chain fatty acids (VLCFAs) and their derivatives. In VLCFAs biosynthesis, β-ketoacyl CoA synthase (E.C.2.3.1.119, KCS) is the key enzyme. Using T-DNA insertional mutagenesis, we identified a cuticle-deficient rice mutant, which displayed a pleiotropic phenotype including reduced growth, leaf fusion, sparse wax crystals, enhanced sensitivity to drought and low fertility. Further analysis indicated that T-DNA was inserted in the 5′-UTR intron of the affected gene, Wax Crystal-Sparse Leaf1 (WSL1), and abnormal transcript caused the loss-of-function of WSL1 gene. Genetic complementation experiment confirmed the function of the candidate gene. WSL1 was predicted to encode a polypeptide containing a conserved FAE1_CUT1_RppA domain typical of the KCS family proteins. Qualitative and quantitative wax composition analyses by gas chromatography–mass spectrometry (GC–MS) demonstrated a marked reduction of total cuticular wax load on wsl1 leaf blades and sheaths, and VLCFA precursors of C20–C24 decreased in both. Moreover, ubiquitous expression of the WSL1 gene gave a hint that WSL1-catalyzed elongation of VLCFAs might participate in a wide range of rice growth and development processes beyond biosynthesis of cuticular waxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VLCFA:

Very-long chain fatty acid (>C18)

KCS:

β-Ketoacyl CoA synthase

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

GC–MS:

Gas chromatography–mass spectrometry

TAIL-PCR:

Thermal asymmetric interlaced PCR

References

  • Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun 346:583–590

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  PubMed  CAS  Google Scholar 

  • Chung BYW, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5′-UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics 7:120

    Article  PubMed  Google Scholar 

  • Dietrich CR, Perera MA, Yandeau-Nelson MD, Meeley RB, Nikolau BJ, Schnable PS (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42:844–861

    Article  PubMed  CAS  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    Article  PubMed  CAS  Google Scholar 

  • Ecker R, Yaniv Z (1993) Genetic control of fatty acid composition in seed oil of Sinapis alba L. Euphytica 69:45–49

    Article  CAS  Google Scholar 

  • Fehling E, Mukherjee KD (1991) Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. BBA-Lipids Lipid Metab 1082:239–246

    Article  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  PubMed  CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2001) Active-site residues of a plant membrane-bound fatty acid elongase β-ketoacyl-CoA synthase, FAE1 KCS. BBA-Lipids Lipid Meta 1530:77–85

    CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2002) Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. Eur J Biochem 269:3531–3539

    Article  PubMed  CAS  Google Scholar 

  • Graca J, Pereira H (2000) Methanolysis of bark suberins: analysis of glycerol and acid monomers. Phytochem Anal 11:45–51

    Article  CAS  Google Scholar 

  • Grant L (1987) Diffuse and specular characteristics of leaf reflectance. Remote Sens Environ 22:309–322

    Article  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  PubMed  CAS  Google Scholar 

  • Gülz PG, Markstädter C, Riederer M (1994) Isomeric alkyl esters in Quercus robur leaf cuticular wax. Phytochemistry 35:79–81

    Article  Google Scholar 

  • Haas K, Brune T, Rücker E (2001) Epicuticular wax crystalloids in rice and sugar cane leaves are reinforced by polymeric aldehydes. J Appl Bot 75:178–187

    CAS  Google Scholar 

  • Han JX, Luhs W, Sonntag K, Zahringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239

    Article  PubMed  CAS  Google Scholar 

  • Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY-ACID ELONGATION1 (FAE1) gene with the maize transposon Activator. Plant Cell 7:309–319

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jenks MA, Rich PJ, Peters PJ, Axtell JD, Ashworth EN (1992) Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. Int J Plant Sci 153:311–319

    Article  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1966) Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax. Biochemistry 5:2265–2275

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Sridhar R (1987) Significance of epicuticular wax in the specificity of blast fungus to rice varieties. Int J Tropical Plant 5:131–139

    Google Scholar 

  • Kunst L, Clemens S (2001) Plant long chain fatty acid biosynthetic enzyme. Patent Cooperation Treaty Int Patent Appl WO 0107586

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Lessire R, Bessoule J-J, Cassagne C (1989) Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells. BBA-Lipids Lipid Meta 1006:35–40

    CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Cheung AY, Sussex IM (1992) Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Dev Biol 152:383–392

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxy fatty acids. Plant Physiol 127:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Chowrira G, Rowland O, Blacklock BJ, Smith MA, Kunst L (2004) A root-specific condensing enzyme from Lesquerella fendleri that elongates very-long-chain saturated fatty acids. Plant Mol Biol 56:917–927

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Gene Dev 10:3018–3027

    Article  PubMed  CAS  Google Scholar 

  • O’Toole JC, Cruz RT, Seiber JN (1979) Epicuticular wax and cuticular resistance in rice. Physiol Plant 47:239–244

    Article  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG, Post-Beittenmiller D (1993) De novo fatty acid biosynthesis. In: Moore TS (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 3–32

    Google Scholar 

  • Oxley D, Bacic A (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci USA 96:14246–14251

    Article  PubMed  CAS  Google Scholar 

  • Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  PubMed  CAS  Google Scholar 

  • Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Qin YM, Pujol FM, Hu CY, Feng JX, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. J Exp Bot 58:473–481

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Skrabs M, Hartmann K, Becker D, Cassagne C, Lessire R (2000) Biochemical and molecular characterization of corn (Zea mays L.) root elongases. Biochem Soc T 28:647–649

    Article  CAS  Google Scholar 

  • Schreiber L, Franke R, Lessire R (2005) Biochemical characterization of elongase activity in corn (Zea mays L.) roots. Phytochemistry 66:131–138

    Article  PubMed  CAS  Google Scholar 

  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108:306–314

    Article  PubMed  CAS  Google Scholar 

  • Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Doring H-P (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J 8:907–917

    PubMed  CAS  Google Scholar 

  • Taleisnik E, Peyrano G, Cordoba A, Arias C (1999) Water retention capacity in root segments differing in the degree of exodermis development. Ann Bot 83:19–27

    Article  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  PubMed  CAS  Google Scholar 

  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein-Knowles PM (1982) Elongase and epicuticular wax biosynthesis. Physiol Veg 20:797–809

    Google Scholar 

  • Woodhead S, Padgham DE (1988) The effect of plant surface characteristics on resistance of rice to the brown planthopper Nilaparvata lugens. Entomol Exp Appl 47:15–22

    Article  Google Scholar 

  • Xu XJ, Dietrich CR, Delledonne M, Xia YJ, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    Article  PubMed  CAS  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Program of Ministry of Science and Technology of China (Grant 2006CB101900) and by the Alexander-von-Humboldt-Stiftung (Postdoc grant awarded to K. R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaozu He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2008_770_MOESM1_ESM.tif

Fig. S1 Morphology of the complemented line HC-8, wild-type (wt) and wsl1 plants. The plant size and vigor of HC-8 was similar to those of the wild-type (TIFF 1,907 kb)

425_2008_770_MOESM2_ESM.tif

Fig. S2 Multiple alignment of WSL1 and six well-characterized KCS family members in Arabidopsis. Arrowheads indicated the conserved Cys223, His391 and Asn424 in all KCS family members (TIFF 1,253 kb)

425_2008_770_MOESM3_ESM.tif

Fig. S3 Composition of the cutin on leaves of wild-type, wsl1 and the complemented line HC-8. No significant difference was found. Cutin was analyzed as described in Jung et al. (2006) (TIFF 1,498 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Ranathunge, K., Huang, H. et al. Wax Crystal-Sparse Leaf1 encodes a β–ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228, 675–685 (2008). https://doi.org/10.1007/s00425-008-0770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0770-9

Keywords

Navigation