A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2


Mutations in hERG (human ether-à-go-go-related gene) potassium channel are closely associated with long QT syndromes. By direct Sanger sequencing, we identified a novel KCNH2 mutation W410R in the patient with long QT syndrome 2 (LQT2). However, the electrophysiological functions of this mutation remain unknown. In comparison to hERGWT channels, hERGW410R channels have markedly decreased total and surface expressions. W410R mutation dramatically reduces hERG channel currents (IKr) and shifts its steady-state activation curve to depolarization. Moreover, hERGW410R channels make dominant-negative effects on hERGWT channels. Significantly, we find hERG channel blocker E-4031 could partially rescue the function of hERGW410R channels by increasing the membrane expression. By using in silico model, we reveal that hERGW410R channels obviously elongate the repolarization of human ventricular myocyte action potentials. Collectively, W410R mutation decreases the currents of hERG channel, because of diminished membrane expression of mutant channels, that subsequently leads to elongated repolarization of cardiomyocyte, which might induce the pathogenesis of LQT2. Furthermore, E-4031 could partially rescue the decreased activity of hERGW410R channels. Thus, our work identifies a novel loss-of-function mutation in KCNH2 gene, which might provide a rational basis for the management of LQT2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373. https://doi.org/10.1161/CIRCULATIONAHA.105.570200

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Anderson CL, Kuzmicki CE, Childs RR, Hintz CJ, Delisle BP, January CT (2014) Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat Commun 5:5535. https://doi.org/10.1038/ncomms6535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Arbelo E, Sarquella-Brugada G, Brugada J (2016) Gene-specific therapy for congenital long QT syndrome: are we there yet? J Am Coll Cardiol 67:1059–1061. https://doi.org/10.1016/j.jacc.2015.12.030

    Article  PubMed  Google Scholar 

  4. 4.

    Balijepalli SY, Lim E, Concannon SP, Chew CL, Holzem KE, Tester DJ, Ackerman MJ, Delisle BP, Balijepalli RC, January CT (2012) Mechanism of loss of Kv11.1 K+ current in mutant T421M-Kv11.1-expressing rat ventricular myocytes: interaction of trafficking and gating. Circulation 126:2809–2818. https://doi.org/10.1161/CIRCULATIONAHA.112.118018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Barsheshet A, Dotsenko O, Goldenberg I (2013) Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol 18:499–509. https://doi.org/10.1111/anec.12117

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803. https://doi.org/10.1016/0092-8674(95)90358-5

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    de la Pena P, Dominguez P, Barros F (2018) Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain. Pflugers Arch 470:1069–1085. https://doi.org/10.1007/s00424-018-2135-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Delisle BP, Anderson CL, Balijepalli RC, Anson BD, Kamp TJ, January CT (2003) Thapsigargin selectively rescues the trafficking defective LQT2 channels G601S and F805C. J Biol Chem 278:35749–35754. https://doi.org/10.1074/jbc.M305787200

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Fan J, Fan W, Lei J, Zhou Y, Xu H, Kapoor I, Zhu G, Wang J (2019) Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 1865:218–229. https://doi.org/10.1016/j.bbadis.2018.08.016

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ficker E, Dennis AT, Obejero-Paz CA, Castaldo P, Taglialatela M, Brown AM (2000) Retention in the endoplasmic reticulum as a mechanism of dominant-negative current suppression in human long QT syndrome. J Mol Cell Cardiol 32:2327–2337. https://doi.org/10.1006/jmcc.2000.1263

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Gao Y, Liu W, Li C, Qiu X, Qin X, Guo B, Liu X, Li J, Yuan Y, Li X, Liang L, Li L, Hong K, Pu J, Liu J, Wang Q, Zhang L, Hu DY (2016) Common genotypes of long QT syndrome in China and the role of ECG prediction. Cardiology 133:73–78. https://doi.org/10.1159/000440608

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gong Q, Anderson CL, January CT, Zhou Z (2004) Pharmacological rescue of trafficking defective HERG channels formed by coassembly of wild-type and long QT mutant N470D subunits. Am J Physiol Heart Circ Physiol 287:H652–H658. https://doi.org/10.1152/ajpheart.00052.2004

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hedley PL, Jorgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M (2009) The genetic basis of long QT and short QT syndromes: a mutation update. Hum Mutat 30:1486–1511. https://doi.org/10.1002/humu.21106

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Helliwell MV, Zhang Y, El Harchi A, Du C, Hancox JC, Dempsey CE (2018) Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker. J Biol Chem 293:7040–7057. https://doi.org/10.1074/jbc.RA117.000363

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, Hayashi K, Nakajima T, Ohno S, Makiyama T, Wu J, Hasegawa K, Mastantuono E, Dagradi F, Pedrazzini M, Yamagishi M, Berthet M, Murakami Y, Shimizu W, Guicheney P, Schwartz PJ, Horie M (2016) The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J 37:1456–1464. https://doi.org/10.1093/eurheartj/ehv695

    Article  PubMed  Google Scholar 

  16. 16.

    Jahangir A, Jain R (2015) Strain echocardiography and LQTS subtypes: mechanical alterations in an electrical disorder. JACC Cardiovasc Imaging 8:511–513. https://doi.org/10.1016/j.jcmg.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Jiang B, Sun X, Cao K, Wang R (2002) Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79. https://doi.org/10.1023/a:1019907104763

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Liu W, Yang J, Hu D, Kang C, Li C, Zhang S, Li P, Chen Z, Qin X, Ying K, Li Y, Li Y, Li Z, Cheng X, Li L, Qi Y, Chen S, Wang Q (2002) KCNQ1 and KCNH2 mutations associated with long QT syndrome in a Chinese population. Hum Mutat 20:475–476. https://doi.org/10.1002/humu.9085

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Liu J, Zhang M, Jiang M, Tseng GN (2003) Negative charges in the transmembrane domains of the HERG K channel are involved in the activation- and deactivation-gating processes. J Gen Physiol 121:599–614. https://doi.org/10.1085/jgp.200308788

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Moss AJ (1997) Clinical management of patients with the long QT syndrome: drugs, devices, and gene-specific therapy. Pacing Clin Electrophysiol 20:2058–2060. https://doi.org/10.1111/j.1540-8159.1997.tb03627.x

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Moss AJ, Kass RS (2005) Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest 115:2018–2024. https://doi.org/10.1172/JCI25537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nogawa H, Kawai T (2014) hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. Eur J Pharmacol 741:336–339. https://doi.org/10.1016/j.ejphar.2014.06.044

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    O'Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7:e1002061. https://doi.org/10.1371/journal.pcbi.1002061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, Dorian P, Huikuri H, Kim YH, Knight B, Marchlinski F, Ross D, Sacher F, Sapp J, Shivkumar K, Soejima K, Tada H, Alexander ME, Triedman JK, Yamada T, Kirchhof P, Lip GY, Kuck KH, Mont L, Haines D, Indik J, Dimarco J, Exner D, Iesaka Y, Savelieva I, Ep-Europace UK (2014) EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm 11:e166–e196. https://doi.org/10.1016/j.hrthm.2014.07.024

    Article  PubMed  Google Scholar 

  25. 25.

    Poterucha JT, Bos JM, Cannon BC, Ackerman MJ (2015) Frequency and severity of hypoglycemia in children with beta-blocker-treated long QT syndrome. Heart Rhythm 12:1815–1819. https://doi.org/10.1016/j.hrthm.2015.04.034

    Article  PubMed  Google Scholar 

  26. 26.

    Roder K, Kabakov A, Moshal KS, Murphy KR, Xie A, Dudley S, Turan NN, Lu Y, MacRae CA, Koren G (2019) Trafficking of the human ether-a-go-go-related gene (hERG) potassium channel is regulated by the ubiquitin ligase rififylin (RFFL). J Biol Chem 294:351–360. https://doi.org/10.1074/jbc.RA118.003852

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Rossenbacker T, Mubagwa K, Jongbloed RJ, Vereecke J, Devriendt K, Gewillig M, Carmeliet E, Collen D, Heidbuchel H, Carmeliet P (2005) Novel mutation in the Per-Arnt-Sim domain of KCNH2 causes a malignant form of long-QT syndrome. Circulation 111:961–968. https://doi.org/10.1161/01.CIR.0000156327.35255.D8

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307. https://doi.org/10.1016/0092-8674(95)90340-2

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767. https://doi.org/10.1161/CIRCULATIONAHA.109.863209

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AAM (2013) Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol 62:169–180. https://doi.org/10.1016/j.jacc.2013.04.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Smith JL, Anderson CL, Burgess DE, Elayi CS, January CT, Delisle BP (2016) Molecular pathogenesis of long QT syndrome type 2. J Arrhythm 32:373–380. https://doi.org/10.1016/j.joa.2015.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Tester DJ, Ackerman MJ (2014) Genetics of long QT syndrome. Methodist Debakey Cardiovasc J 10:29–33. https://doi.org/10.14797/mdcj-10-1-29

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K+ channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. https://doi.org/10.1152/physrev.00036.2011

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Wang W, MacKinnon R (2017) Cryo-EM structure of the open human ether-a-go-go-related K+ channel hERG. Cell 169:422–430.e10. https://doi.org/10.1016/j.cell.2017.03.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yoshida H, Horie M, Otani H, Takano M, Tsuji K, Kubota T, Fukunami M, Sasayama S (1999) Characterization of a novel missense mutation in the pore of HERG in a patient with long QT syndrome. J Cardiovasc Electrophysiol 10:1262–1270. https://doi.org/10.1111/j.1540-8167.1999.tb00304.x

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Yu SP, Kerchner GA (1998) Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J Neurosci Res 52:612–617. https://doi.org/10.1002/(SICI)1097-4547(19980601)52:5<612::AID-JNR13>3.0.CO;2-3

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zhou Y, Fan J, Zhu H, Ji L, Fan W, Kapoor I, Wang Y, Wang Y, Zhu G, Wang J (2017) Aberrant splicing induced by dysregulated Rbfox2 produces enhanced function of CaV1.2 calcium channel and vascular myogenic tone in hypertension. Hypertension 70:1183–1192. https://doi.org/10.1161/HYPERTENSIONAHA.117.09301

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Zienciuk-Krajka A, Sterlinski M, Filipecki A, Owczuk R, Bednarek J, Kempa M, Sielski S, Dziduszko M, Mitkowski P, Kazmierczak J, Kusnierz J, Michalkiewicz D, Stec SM, Gulaj M, Majcherek R, Lubinski A, Raczak G (2018) Implantable cardioverter-defibrillators in patients with long QT syndrome: a multicentre study. Kardiol Pol 76:1687–1696. https://doi.org/10.5603/KP.a2018.0177

    Article  PubMed  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (81600274 and 31871149), the Natural Science Foundation of Jiangsu Province (BK20171482), and the National Key R&D Program of China (2017YFC0909400).

Author information



Corresponding authors

Correspondence to Juejin Wang or Kejiang Cao or Minglong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(PDF 398 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, K., Qian, D., Qin, H. et al. A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2. Pflugers Arch - Eur J Physiol 473, 219–229 (2021). https://doi.org/10.1007/s00424-021-02518-1

Download citation


  • Long QT syndrome 2
  • hERG channel
  • Mutation
  • Electrophysiology