Skip to main content

Now a Nobel gas: oxygen

Abstract

The recent bestowal of the Nobel Prize 2019 in Physiology or Medicine to Gregg L. Semenza, Sir Peter J. Ratcliffe, and William G. Kaelin Jr. celebrates a series of remarkable discoveries that span from the physiological research question on how oxygen deficiency (hypoxia) induces the red blood cell forming hormone erythropoietin (Epo) to the first clinical application of a novel family of Epo-inducing drugs to treat patients suffering from renal anemia. This review looks back at the most important findings made by the three Nobel laureates, highlights current research trends, and sheds an eye on future perspectives of hypoxia research, including emerging and potential clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Adams DF, Watkins MS, Durette L, Laliberte J, Goulet F, Debien E, Frazier KS, Mellal N, Chen L, Shi W, Thomas R, Hu E (2019) Carcinogenicity assessment of daprodustat (GSK1278863), a hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor. Toxicol Pathol:192623319880445. https://doi.org/10.1177/0192623319880445

  2. 2.

    Astor BC, Muntner P, Levin A, Eustace JA, Coresh J (2002) Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med 162:1401–1408. https://doi.org/10.1001/archinte.162.12.1401

    Article  PubMed  Google Scholar 

  3. 3.

    Babitt JL, Lin HY (2012) Mechanisms of anemia in CKD. J Am Soc Nephrol 23:1631–1634. https://doi.org/10.1681/asn.2011111078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S (2019) Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363:1222–1226. https://doi.org/10.1126/science.aau5870

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Beck J, Henschel C, Chou J, Lin A, Del Balzo U (2017) Evaluation of the carcinogenic potential of roxadustat (FG-4592), a small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase in CD-1 mice and Sprague Dawley rats. Int J Toxicol 36:427–439. https://doi.org/10.1177/1091581817737232

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, Flamme I, Fandrey J (2008) Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 283:31745–31753. https://doi.org/10.1074/jbc.M804390200

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schödel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU (2009) Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci USA 106:21276–21281

    CAS  PubMed  Google Scholar 

  8. 8.

    Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Günzler V, Eckardt KU (2010) Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 21:2151–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bishop T, Ratcliffe PJ (2015) HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ Res 117:65–79. https://doi.org/10.1161/circresaha.117.305109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Blumberg A, Keller H, Marti HR (1973) Effect of altitude on erythropoiesis and oxygen affinity in anaemic patients on maintenance dialysis. Eur J Clin Invest 3:93–97. https://doi.org/10.1111/j.1365-2362.1973.tb00334.x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    CAS  PubMed  Google Scholar 

  12. 12.

    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshet E (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    CAS  PubMed  Google Scholar 

  13. 13.

    Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LM, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A (2016) REST is a hypoxia-responsive transcriptional repressor. Sci Rep 6:31355. https://doi.org/10.1038/srep31355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, Meng YJ, Meier SR, Jennings RB, Creech AL, Herbert ZT, McBrayer SK, Olenchock BA, Jaffe JD, Haigis MC, Beroukhim R, Signoretti S, Koivunen P, Kaelin WG Jr (2019) Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363:1217–1222. https://doi.org/10.1126/science.aaw1026

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chan MC, Ilott NE, Schodel J, Sims D, Tumber A, Lippl K, Mole DR, Pugh CW, Ratcliffe PJ, Ponting CP, Schofield CJ (2016) Tuning the transcriptional response to hypoxia by inhibiting hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. J Biol Chem 291:20661–20673. https://doi.org/10.1074/jbc.M116.749291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chandra M, Clemons GK, McVicar MI (1988) Relation of serum erythropoietin levels to renal excretory function: evidence for lowered set point for erythropoietin production in chronic renal failure. J Pediatr 113:1015–1021. https://doi.org/10.1016/s0022-3476(88)80573-0

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Chen N, Hao C, Liu BC, Lin H, Wang C, Xing C, Liang X, Jiang G, Liu Z, Li X, Zuo L, Luo L, Wang J, Zhao MH, Liu Z, Cai GY, Hao L, Leong R, Wang C, Liu C et al (2019) Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med 381:1011–1022. https://doi.org/10.1056/NEJMoa1901713

    Article  PubMed  Google Scholar 

  18. 18.

    Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, Chen J, Luo L, Zuo L, Liao Y, Liu BC, Leong R, Wang C, Liu C, Neff T, Szczech L et al (2019) Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med 381:1001–1010. https://doi.org/10.1056/NEJMoa1813599

    Article  PubMed  Google Scholar 

  19. 19.

    Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C et al (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–117. https://doi.org/10.1038/nature19796

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, Carvo I, Signoretti S, Bruick RK, Josey JA, Wallace EM, Kaelin WG (2016) On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539:107–111. https://doi.org/10.1038/nature19795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, Ratcliffe PJ, Ragoussis J, Mole DR (2014) Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep 15:70–76

    CAS  PubMed  Google Scholar 

  22. 22.

    Chowdhury R, Leung IK, Tian YM, Abboud MI, Ge W, Domene C, Cantrelle FX, Landrieu I, Hardy AP, Pugh CW, Ratcliffe PJ, Claridge TD, Schofield CJ (2016) Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun 7:12673. https://doi.org/10.1038/ncomms12673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WDJ, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ (2019) Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 8. https://doi.org/10.7554/eLife.46490

  24. 24.

    Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    CAS  PubMed  Google Scholar 

  25. 25.

    Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ (2009) Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol Cell Proteomics 8:535–546

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouysségur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc Natl Acad Sci USA 103:18154–18159

    CAS  PubMed  Google Scholar 

  27. 27.

    Cummins EP, Comerford KM, Scholz C, Bruning U, Taylor CT (2007) Hypoxic regulation of NF-κB signaling. Methods Enzymol 435:479–492. https://doi.org/10.1016/s0076-6879(07)35025-8

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK (2018) Hypoxia mimetic agents for ischemic stroke. Front Cell Dev Biol 6:175. https://doi.org/10.3389/fcell.2018.00175

    Article  PubMed  Google Scholar 

  29. 29.

    Dhillon S (2019) Roxadustat: first global approval. Drugs 79:563–572. https://doi.org/10.1007/s40265-019-01077-1

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ebert BL, Bunn HF (1998) Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 18:4089–4096

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1α, HIF-2α, and other pathways. J Biol Chem 281:15215–15226

    CAS  PubMed  Google Scholar 

  32. 32.

    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    CAS  PubMed  Google Scholar 

  33. 33.

    Feldman DE, Chauhan V, Koong AC (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 3:597–605. https://doi.org/10.1158/1541-7786.mcr-05-0221

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ (1994) Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci USA 91:6496–6500

    CAS  PubMed  Google Scholar 

  35. 35.

    Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    CAS  PubMed  Google Scholar 

  36. 36.

    Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    CAS  PubMed  Google Scholar 

  37. 37.

    Grampp S, Platt JL, Lauer V, Salama R, Kranz F, Neumann VK, Wach S, Stohr C, Hartmann A, Eckardt KU, Ratcliffe PJ, Mole DR, Schodel J (2016) Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat Commun 7:13183. https://doi.org/10.1038/ncomms13183

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Grampp S, Schmid V, Salama R, Lauer V, Kranz F, Platt JL, Smythies J, Choudhry H, Goppelt-Struebe M, Ratcliffe PJ, Mole DR, Schödel J (2017) Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet 13:e1006872. https://doi.org/10.1371/journal.pgen.1006872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Haase VH (2017) HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodialysis international International Symposium on Home Hemodialysis 21(Suppl 1):s110–s124. https://doi.org/10.1111/hdi.12567

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Haidar MA, Loya F, Yang Y, Lin H, Glassman A, Keating MJ, Goldwasser E, Albitar M (1996) Differential expression of lacZ in the liver and kidney of transgenic mice carrying chimeric lacZ-erythropoietin gene constructs with or without its 1.2 kb 3'-flanking sequence. Nucl Acids Res 24:3621–3628

    CAS  PubMed  Google Scholar 

  41. 41.

    Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    CAS  PubMed  Google Scholar 

  42. 42.

    Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    CAS  PubMed  Google Scholar 

  43. 43.

    Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–978. https://doi.org/10.1038/nature00767

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Honda H, Hosaka N, Ganz T, Shibata T (2019) Iron metabolism in chronic kidney disease patients. Contrib Nephrol 198:103–111. https://doi.org/10.1159/000496369

    Article  PubMed  Google Scholar 

  45. 45.

    Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC (2006) Differential regulation of the transcriptional activities of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in stem cells. Mol Cell Biol 26:3514–3526

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    CAS  PubMed  Google Scholar 

  47. 47.

    Iliopoulos O, Kibel A, Gray S, Kaelin WG Jr (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1:822–826

    CAS  PubMed  Google Scholar 

  48. 48.

    Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93:10595–10599

    CAS  PubMed  Google Scholar 

  49. 49.

    Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99:13459–13464

    CAS  PubMed  Google Scholar 

  50. 50.

    Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    CAS  Google Scholar 

  53. 53.

    Kaelin WG Jr (2010) New cancer targets emerging from studies of the Von Hippel-Lindau tumor suppressor protein. Ann NY Acad Sci 1210:1–7. https://doi.org/10.1111/j.1749-6632.2010.05781.x

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    CAS  PubMed  Google Scholar 

  55. 55.

    Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 97:10430–10435

    CAS  PubMed  Google Scholar 

  56. 56.

    KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease (2012) Kidney Int Suppl 2:279–335

  57. 57.

    Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr (1995) Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269:1444–1446

    CAS  PubMed  Google Scholar 

  59. 59.

    Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM (2007) Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110:3610–3617

    PubMed  Google Scholar 

  60. 60.

    Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kolk-Vegter AJ, Bosch E, van Leeuwen AM (1971) Influence of serum hepatitis on haemoglobin level in patients on regular haemodialysis. Lancet 1:526–528. https://doi.org/10.1016/s0140-6736(71)91127-5

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr (2003) Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1:E83. https://doi.org/10.1371/journal.pbio.0000083

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:237–246

    CAS  PubMed  Google Scholar 

  64. 64.

    Koong AC, Chen EY, Mivechi NF, Denko NC, Stambrook P, Giaccia AJ (1994) Hypoxic activation of nuclear factor-κ B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res 54:5273–5279

    CAS  PubMed  Google Scholar 

  65. 65.

    Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 α enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30:344–353. https://doi.org/10.1128/mcb.00444-09

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH (2000) Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19:5435–5443

    CAS  PubMed  Google Scholar 

  67. 67.

    Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucl Acids Res 23:4542–4550

    CAS  PubMed  Google Scholar 

  68. 68.

    Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320. https://doi.org/10.1126/science.8493574

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Levy AP, Levy NS, Goldberg MA (1996) Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 271:25492–25497

    CAS  PubMed  Google Scholar 

  71. 71.

    Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753

    CAS  PubMed  Google Scholar 

  72. 72.

    Levy AP, Levy NS, Iliopoulos O, Jiang C, Kaelin WG Jr, Goldberg MA (1997) Regulation of vascular endothelial growth factor by hypoxia and its modulation by the von Hippel-Lindau tumor suppressor gene. Kidney Int 51:575–578

    CAS  PubMed  Google Scholar 

  73. 73.

    Liu Q, Davidoff O, Niss K, Haase VH (2012) Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 122:4635–4644. https://doi.org/10.1172/jci63924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW, Kaelin WG Jr (1998) Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18:732–741

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625. https://doi.org/10.1126/science.1231677

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Madan A, Lin C, Hatch SLI, Curtin PT (1995) Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. Blood 85:2735–2741

    CAS  PubMed  Google Scholar 

  77. 77.

    Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, Cox TR, Sahai E, Erler JT (2015) Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16:1394–1408. https://doi.org/10.15252/embr.201540107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C (2009) HIF-2α, but not HIF-1α, promotes iron absorption in mice. J Clin Invest 119:1159–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Maxwell PH, Eckardt KU (2016) HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 12:157–168. https://doi.org/10.1038/nrneph.2015.193

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Maxwell PH, Ferguson DJ, Osmond MK, Pugh CW, Heryet A, Doe BG, Johnson MH, Ratcliffe PJ (1994) Expression of a homologously recombined erythopoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. Blood 84:1823–1830

    CAS  PubMed  Google Scholar 

  82. 82.

    Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44:1149–1162

    CAS  PubMed  Google Scholar 

  83. 83.

    Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ (1994) Erythropoietin-producing cells in transgenic mice expressing SV40 large T antigen directed by erythropoietin control sequences. Ann NY Acad Sci 718:356–358

    CAS  PubMed  Google Scholar 

  84. 84.

    Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 90:2423–2427

    CAS  PubMed  Google Scholar 

  85. 85.

    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    CAS  Google Scholar 

  86. 86.

    McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20:659–672. https://doi.org/10.1016/j.sbi.2010.08.006

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Burgel T, Jelkmann W, Acker H, Fandrey J (2003) Intracellular localisation of human HIF-1 α hydroxylases: implications for oxygen sensing. J Cell Sci 116:1319–1326. https://doi.org/10.1242/jcs.00318

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y (2012) Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 32:3018–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP (2002) Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    CAS  PubMed  Google Scholar 

  90. 90.

    Minamishima YA, Kaelin WG Jr (2010) Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329:407. https://doi.org/10.1126/science.1192811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111:3236–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr (2009) A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol 29:5729–5741

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Myllyharju J, Koivunen P (2013) Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles. Biol Chem 394:435–448. https://doi.org/10.1515/hsz-2012-0328

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Nolan KA, Wenger RH (2018) Source and microenvironmental regulation of erythropoietin in the kidney. Curr Opin Nephrol Hypertens 27:277–282. https://doi.org/10.1097/mnh.0000000000000420

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Nwogu JI, Geenen D, Bean M, Brenner MC, Huang X, Buttrick PM (2001) Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104:2216–2221. https://doi.org/10.1161/hc4301.097193

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    CAS  PubMed  Google Scholar 

  98. 98.

    Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L (2010) Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucl Acids Res 38:2332–2345

    CAS  PubMed  Google Scholar 

  99. 99.

    Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, Feyzi JM, Ivanovich P, Kewalramani R, Levey AS, Lewis EF, McGill JB, McMurray JJ, Parfrey P, Parving HH, Remuzzi G, Singh AK, Solomon SD, Toto R (2009) A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 361:2019–2032. https://doi.org/10.1056/NEJMoa0907845

    Article  PubMed  Google Scholar 

  100. 100.

    Platt JL, Salama R, Smythies J, Choudhry H, Davies JO, Hughes JR, Ratcliffe PJ, Mole DR (2016) Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep 17:1410–1421. https://doi.org/10.15252/embr.201642198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    CAS  PubMed  Google Scholar 

  102. 102.

    Provenzano R, Besarab A, Sun CH, Diamond SA, Durham JH, Cangiano JL, Aiello JR, Novak JE, Lee T, Leong R, Roberts BK, Saikali KG, Hemmerich S, Szczech LA, Yu KH, Neff TB (2016) Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clinical journal of the American Society of Nephrology : CJASN 11:982–991. https://doi.org/10.2215/cjn.06890615

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J Biol Chem 272:11205–11214

    CAS  PubMed  Google Scholar 

  104. 104.

    Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E et al (2011) Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 43:60–65. https://doi.org/10.1038/ng.723

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Simon MC, Keith B, Haase VH (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117:1068–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Reischl S, Li L, Walkinshaw G, Flippin LA, Marti HH, Kunze R (2014) Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke. PLoS One 9:e84767

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Rossert J, Casadevall N, Eckardt KU (2004) Anti-erythropoietin antibodies and pure red cell aplasia. J Am Soc Nephrol 15:398–406. https://doi.org/10.1097/01.asn.0000107561.59698.42

    Article  PubMed  Google Scholar 

  109. 109.

    Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Salama R, Masson N, Simpson P, Sciesielski LK, Sun M, Tian YM, Ratcliffe PJ, Mole DR (2015) Heterogeneous effects of direct hypoxia pathway activation in kidney cancer. PLoS One 10:e0134645. https://doi.org/10.1371/journal.pone.0134645

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Salceda S, Caro J (1997) Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    CAS  PubMed  Google Scholar 

  112. 112.

    Sanghani NS, Haase VH (2019) Hypoxia-inducible factor activators in renal anemia: current clinical experience. Ad Chronic Kidney Dis 26:253–266. https://doi.org/10.1053/j.ackd.2019.04.004

    Article  Google Scholar 

  113. 113.

    Scheuermann TH, Li Q, Ma HW, Key J, Zhang L, Chen R, Garcia JA, Naidoo J, Longgood J, Frantz DE, Tambar UK, Gardner KH, Bruick RK (2013) Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol 9:271–276. https://doi.org/10.1038/nchembio.1185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Schley G, Klanke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Struebe M, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C (2019) Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int 96:378–396. https://doi.org/10.1016/j.kint.2019.02.016

    CAS  Article  PubMed  Google Scholar 

  115. 115.

    Schödel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, Tomlinson IP, Ratcliffe PJ, Mole DR (2012) Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat Genet 44(420-425):S421–S422

    Google Scholar 

  116. 116.

    Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–e217

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Seeley TW, Sternlicht MD, Klaus SJ, Neff TB, Liu DY (2017) Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer. Hypoxia 5:1–9. https://doi.org/10.2147/hp.s130526

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171

    CAS  PubMed  Google Scholar 

  119. 119.

    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408. https://doi.org/10.1016/j.cell.2012.01.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Semenza GL, Dureza RC, Traystman MD, Gearhart JD, Antonarakis SE (1990) Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol Cell Biol 10:930–938

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE (1991) Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci USA 88:8725–8729

    CAS  PubMed  Google Scholar 

  122. 122.

    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684

    CAS  PubMed  Google Scholar 

  123. 123.

    Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    CAS  PubMed  Google Scholar 

  124. 124.

    Semenza GL, Traystman MD, Gearhart JD, Antonarakis SE (1989) Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc Natl Acad Sci USA 86:2301–2305

    CAS  PubMed  Google Scholar 

  125. 125.

    Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ (2009) Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9:152–164

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Shalhoub RJ, Rajan U, Kim VV, Goldwasser E, Kark JA, Antoniou LD (1982) Erythrocytosis in patients on long-term hemodialysis. Ann Intern Med 97:686–690. https://doi.org/10.7326/0003-4819-97-5-686

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, Kaelin WG Jr (2011) Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov 1:222–235

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Simonson TS, McClain DA, Jorde LB, Prchal JT (2012) Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 131:527–533. https://doi.org/10.1007/s00439-011-1109-3

    Article  PubMed  Google Scholar 

  130. 130.

    Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355:2085–2098. https://doi.org/10.1056/NEJMoa065485

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Srinivas V, Zhang LP, Zhu XH, Caro J (1999) Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor α (HIF-α) proteins. Biochem Biophys Res Commun 260:557–561

    CAS  PubMed  Google Scholar 

  132. 132.

    Strowitzki MJ, Cummins EP, Taylor CT (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous? Cells 8. https://doi.org/10.3390/cells8050384

    PubMed Central  Google Scholar 

  133. 133.

    Sugahara M, Tanaka T, Nangaku M (2017) Prolyl hydroxylase domain inhibitors as a novel therapeutic approach against anemia in chronic kidney disease. Kidney Int 92:306–312. https://doi.org/10.1016/j.kint.2017.02.035

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Sutter CH, Laughner E, Semenza GL (2000) Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97:4748–4753

    CAS  PubMed  Google Scholar 

  135. 135.

    Suzuki N, Obara N, Pan X, Watanabe M, Jishage K, Minegishi N, Yamamoto M (2011) Specific contribution of the erythropoietin gene 3' enhancer to hepatic erythropoiesis after late embryonic stages. Mol Cell Biol 31:3896–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, Patel UD, Singh AK (2008) Secondary analysis of the CHOIR trial epoetin-α dose and achieved hemoglobin outcomes. Kidney Int 74:791–798. https://doi.org/10.1038/ki.2008.295

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Takahashi Y, Takahashi S, Shiga Y, Yoshimi T, Miura T (2000) Hypoxic induction of prolyl 4-hydroxylase α (I) in cultured cells. J Biol Chem 275:14139–14146

    CAS  PubMed  Google Scholar 

  138. 138.

    Tambuwala MM, Manresa MC, Cummins EP, Aversa V, Coulter IS, Taylor CT (2015) Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J Control Release 217:221–227. https://doi.org/10.1016/j.jconrel.2015.09.022

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1α by the von hippel-lindau tumor suppressor protein. EMBO J 19:4298–4309

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Tanimoto K, Tsuchihara K, Kanai A, Arauchi T, Esumi H, Suzuki Y, Sugano S (2011) Genome-wide identification and annotation of HIF-1α binding sites in two cell lines using massively parallel sequencing. Hugo J 4:35–48

    PubMed Central  Google Scholar 

  141. 141.

    Tausendschön M, Rehli M, Dehne N, Schmidl C, Doring C, Hansmann ML, Brüne B (2015) Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10. Biochim Biophys Acta 1849:10–22. https://doi.org/10.1016/j.bbagrm.2014.10.006

    CAS  Article  PubMed  Google Scholar 

  142. 142.

    Taylor CT, Colgan SP (2017) Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 17:774–785. https://doi.org/10.1038/nri.2017.103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Taylor MS (2001) Characterization and comparative analysis of the EGLN gene family. Gene 275:125–132. https://doi.org/10.1016/s0378-1119(01)00633-3

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    CAS  PubMed  Google Scholar 

  145. 145.

    Tiana M, Acosta-Iborra B, Puente-Santamaria L, Hernansanz-Agustin P, Worsley-Hunt R, Masson N, Garcia-Rio F, Mole D, Ratcliffe P, Wasserman WW, Jimenez B, Del Peso L (2018) The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucl Acids Res 46:120–133. https://doi.org/10.1093/nar/gkx951

    CAS  Article  PubMed  Google Scholar 

  146. 146.

    Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, Reuter VE, Hsieh JJ, Scandura JM, Massague J (2013) Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 19:50–56. https://doi.org/10.1038/nm.3029

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM (2015) Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Eur J Physiol 467:2141–2149. https://doi.org/10.1007/s00424-014-1667-z

    CAS  Article  Google Scholar 

  148. 148.

    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    CAS  PubMed  Google Scholar 

  149. 149.

    Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308

    CAS  PubMed  Google Scholar 

  150. 150.

    Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    CAS  PubMed  Google Scholar 

  151. 151.

    Warnecke C, Weidemann A, Volke M, Schietke R, Wu X, Knaup KX, Hackenbeck T, Bernhardt W, Willam C, Eckardt KU, Wiesener MS (2008) The specific contribution of hypoxia-inducible factor-2α to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Exp Cell Res 314:2016–2027. https://doi.org/10.1016/j.yexcr.2008.03.003

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464

    CAS  PubMed  Google Scholar 

  153. 153.

    Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253–1263

    CAS  PubMed  Google Scholar 

  154. 154.

    Wenger RH, Kurtz A (2011) Erythropoietin. Compr Physiol 1:1759–1794

    PubMed  Google Scholar 

  155. 155.

    Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12

    PubMed  Google Scholar 

  156. 156.

    Whyte MK, Walmsley SR (2014) The regulation of pulmonary inflammation by the hypoxia-inducible factor-hydroxylase oxygen-sensing pathway. Ann Am Thorac Soc 11(Suppl 5):s271–s276. https://doi.org/10.1513/AnnalsATS.201403-108AW

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Winning S, Splettstoesser F, Fandrey J, Frede S (2010) Acute hypoxia induces HIF-independent monocyte adhesion to endothelial cells through increased intercellular adhesion molecule-1 expression: the role of hypoxic inhibition of prolyl hydroxylase activity for the induction of NF-κ B. J Immunol 185:1786–1793. https://doi.org/10.4049/jimmunol.0903244

    CAS  Article  PubMed  Google Scholar 

  158. 158.

    Wish JB, Aronoff GR, Bacon BR, Brugnara C, Eckardt KU, Ganz T, Macdougall IC, Nunez J, Perahia AJ, Wood JC (2018) Positive iron balance in chronic kidney disease: how much is too much and how to tell? Am J Nephrol 47:72–83. https://doi.org/10.1159/000486968

    CAS  Article  PubMed  Google Scholar 

  159. 159.

    Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106:4260–4265. https://doi.org/10.1073/pnas.0810067106

    Article  PubMed  Google Scholar 

  160. 160.

    Yamashita T, Ohneda O, Nagano M, Iemitsu M, Makino Y, Tanaka H, Miyauchi T, Goto K, Ohneda K, Fujii-Kuriyama Y, Poellinger L, Yamamoto M (2008) Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol 28:1285–1297. https://doi.org/10.1128/mcb.01332-07

    CAS  Article  PubMed  Google Scholar 

  161. 161.

    Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, Huang D, Xing M, Chan YS, Qu JZ, Tay ST, Wijaya G, Lam YN, Hong JH, Lee-Lim AP, Guan P, Ng MSW, He CZ, Lin JS, Nandi T et al (2017) VHL deficiency drives enhancer activation of oncogenes in clear cell renal cell carcinoma. Cancer Discov 7:1284–1305. https://doi.org/10.1158/2159-8290.cd-17-0375

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

RHW was supported by the National Centre of Competence in Research “Kidney.CH” and the Swiss National Science Foundation (310030_184813); and JS received funding from the German Research Foundation (387509280-SFB 1350 C5).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roland H. Wenger.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fandrey, J., Schödel, J., Eckardt, KU. et al. Now a Nobel gas: oxygen. Pflugers Arch - Eur J Physiol 471, 1343–1358 (2019). https://doi.org/10.1007/s00424-019-02334-8

Download citation

Keywords

  • Erythropoietin
  • High altitude
  • Hypoxia
  • Oxygen sensing
  • Protein hydroxylation
  • von Hippel-Lindau